Self-Organized Criticality
In Genomes

Physics Department Colloquium
National Central University
2006 May 23

HC Lee
Computational Biology Lab
Inst. Systems Biology & Bioinformatics
Dept. Physics & Inst. Biophysics
National Central University
Three questions we should ask

• **WHAT** is the phenomenon?
 - What is strange/ unusual/ interesting?

• **HOW** did it happen?
 - (Physics)

• **WHY** did it happen?
 - (Biology)
Some concepts to be discussed

- Genome - book of life
- Genome as text
- Average and standard deviation
- The central limit theorem (in probability)
- Power-law in complete genomes
- Scaling and power-law
- Criticality and scale invariance
- Self-organized criticality
- Genome the blind critical self-copier
Life is highly diverse and complex
And it took a long time to get here

Divergence of species

4 billion yrs ago

now
Evolution of life is recorded in genomes

- Genome is Book of Life
- A double helix - two strands of DNA
- DNA: String of four types of molecules – chemical letters - A, C, G, T
- Genome is a linear text written in four letters
- We believe all genomes have a common ancestor, or a small group of ancestors
Genome is an extremely complex

The 24 human genomes
A stretch of genome from the X chromosome of Homo sapien

The complete genome has 2,000,000 such pages
Genomes are Blind Self-Copiers - Summary of earlier work on genome sequence analysis

- Genomes form a universality class
 - universal effective lengths
 - maximal homogeneity in word-content

- Genomes are Blind Self-Copiers
 - Growth by maximally random segmental duplication (MRSD)
 - Very early onset of duplication process

- MRSD itself is chosen by natural selection
Another clue from the human genome

Initial sequencing and analysis of the human genome \((3.36 \times 10^9 \text{ base pairs})\)

International Human Genome Sequencing Consortium*

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

The rediscovery of Mendel's laws of heredity in the opening weeks of the 20th century\(^1-3\) sparked a scientific quest to understand the nature and content of genetic information that has propelled biology for the last hundred years. The scientific progress made falls naturally into four main phases, corresponding roughly to the four quarters of the century. The first established the cellular basis of heredity: the chromosomes. The second defined the molecular basis of heredity: the DNA double helix. The third unlocked the informational basis of heredity, with the discovery of the biological mechanism by which cells read the information contained in genes and with the invention of the recombinant DNA technologies of cloning and sequencing by which scientists can do the same.

The last quarter of a century has been marked by a relentless drive to decipher first genes and then entire genomes, spawning the field coordinate regulation of the genes in the clusters.

● There appear to be about 30,000–40,000 protein-coding genes in the human genome—only about twice as many as in worm or fly. However, the genes are more complex, with more alternative splicing generating a larger number of protein products.

● The full set of proteins (the 'proteome') encoded by the human genome is more complex than those of invertebrates. This is due in part to the presence of vertebrate-specific protein domains and motifs (an estimated 7% of the total), but more to the fact that vertebrates appear to have arranged pre-existing components into a richer collection of domain architectures.

● Hundreds of human genes appear likely to have resulted from horizontal transfer from bacteria at some point in the vertebrate lineage. Dozens of genes appear to have been derived from trans-
Long-range variation in GC content is evident not just from extreme outliers, but throughout the genome…the standard deviation barely decreases as window size increases by successive factors of four - 5.9%, 5.2%, 4.9% and 4.6% for windows of size 5, 20, 80 and 320 kb.
What was measured? And why?

• Cut genome into fixed-sized windows and compute the GC-content (percentage words that are G or C) in each window
 …tgctgagaaacatcaagctgtttctcctcccaaaagacacttcgcagccccctcttggaatccagcg….

• Plot distribution: histogram of no. of windows vs. GC-content
 – Human genome is 41% GC

• Compute SD of distribution
GC content variation in human chromosome 1

Human Chr 1 ~ 228 Mb
Ave. CG ~ 41%
Window size: 10 kb
No. of windows: 2.3×10^4
Genes prefer higher GC regions
Why was result strange?
The Central Limit Theorem

• A large number of independent observations from the same distribution has an approximate normal (Gaussian) distribution whose variance is inversely proportional to sample size.
 – PS Laplace 1810; A. Lyapunov 1899.

• Roughly: \((SD)^2 \sim 1/(\text{sample size})\)
For GC-content histograms: sample size = window size

Variation of CG-content in Human genome does not obey central limit theorem
CG-content in Human genome has long-range variation

Window size increased by factor of 10^4, but SD decreased by only 2.6
But it does obey a power law

- Power law
 \[SD \sim (\text{window size})^{\gamma} \]
 (Log-log plot is a straight line with slope \(\gamma \))

- Central limit theorem: \(\gamma = -0.5 \)

- Human chromosomes: \(\gamma \sim -0.07 \)
Power law is universal for complete eukaryotic genomes: $\gamma = -0.06$ to -0.42
And for bacteria: $\gamma = 0.16$ to -0.45.
Power law results from scale invariance

• Let \(f(x) \) be a function of a scale (i.e., a length) variable
• Consider the property of \(f \) when \(x \) is changed by a scale factor: \(x \rightarrow \lambda x \)
• The function \(f \) is scale invariant if
 \[
 f(\lambda x) = \lambda^\gamma f(x)
 \]
 \(\gamma \) is the scaling exponent
• Exercise: Show that \(f \) obeys power-law:
 \[
 f(x) \sim x^\gamma
 \]
Criticality & scale invariance

- Criticality refers to the behaviour of extended systems at a phase transition where scale invariance and self-similarity prevail.
 - Criticality in material (often) requires fine-tuning in external conditions such as temperature, pressure, etc.
 - Challenging field of study in theoretical physics (water, spin-systems, condensed matter)
Opalescence (fusing of liquid & vapor phases) in water occurs at 650 K & 2x10^7 Pa.
Critically = Scale invariance + self-similarity

- Scale invariance: there are domains of all sizes

- Self-similarity: there are domains (of all sizes) within domains
A 2D critical spin-system
(black: spin-up; white: spin-down)

There are domains of all sizes, and there are domain within domains

A non-critical 2D system
Self-similarity in human chromosome 1
Another look at HS genome: scaling in domain size

Human Chromosome (3 Bb)

Domain: Connected windows with GC content above(+) /below(-) average

Random sequence 1 kb window

1 kb window

300 kb window
• Genomes exhibit non-trivial power-law behavior
 - Long-range variation in GC content

• Genomes exhibit self-similarity
 - Within each GC-specific domain there is another level of long-range variation

• How did genomes become critical
Self-Organized Criticality

- Many critical systems in Nature are self-organized: earthquakes in seismic systems, avalanches in granular media and rainfall in the atmosphere.
- Bak-Tang-Wiesenfield sandpile model
 - extended dynamical systems governed by simple rules
 - robust critical fixed point
 - dissipative to stay at criticality
Sandpile model: size of avalanche has power-law distribution

Bak-Tang-Wiesenfield PRL (1987)
Genome the critical blind self-copier

- Previous growth model: Genome the blind self-copier
 - Maximally random segmental duplication
 - Duplicated segments: randomly selected over a fixed length (~2000 bases)
 - No long range variation > 2000 b; no scaling

- New model: Genome the critical blind self-copier
 - Still MRSD
 - Duplicated segment
 - Any length up to current genome length
 - Repeated a random number of times before insertion
Five steps of critical maximally random segmental duplication

1. Original genome

2. Duplication - copy any segment of any length

3. Replication - repeat segment any number of times

4. Insertion - at any site

5. Longer new genome has repeated copied segment

Maximally random: All selections are random
Preliminary modeling results promising.

Blue: E coli, 4.6 Mb
Others: model sequences

Black: human chr 1, 228 Mb
Blue and purple: model sequences

Model generates scaling and self-similarity, but needs fine-tuning to reproduce data for individual genome.
Why would genome grow by Critical MRSD?

- Rapid rate of evolution - random self-copying is an extremely efficient way for information accumulation; it is genome’s way to “beat” the 2nd law of thermo-dynamics.

- Growth by random self-copying is a result of natural selection.
Many biological phenomena explained by model

- Preponderance of homologous genes in all genomes
 - All genes belong to homologous families
- Genome is full of non-coding repeats
- Large-scale genome “rearrangements”
- Huge species diversity
- Apparent “missing link”
 - Coexistence of gradualism and punctuated equilibrium
- Many more …
People at CBL who work on project

- Dr. Hsieh Li-Ching – now with Genome Research Center, Academic Sinica
- Dr. Chen Da-Yuan – now at He-Hsin Cancer Research Center
- Chen Hong-Da - PhD student
- Kong Sing-Kuan - PhD student
- Fan Wen-Lang - PhD student
Computation Biology Laboratory (2003)
Our papers and PDF version of talk are found at Google: HC Lee

Thank you!