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Abstract

Magnetoencephalography (MEG) provides dynamic spatial-temporal insight of neu-
ral activities in the cortex. Because the number of possible sources is far greater
than the number of MEG detectors, the proposition to localize sources directly from
MEG data is notoriously ill-posed. Here we develop a method based on data process-
ing procedures including clustering, forward and backward filtering, and the method
of maximum entropy. We show that taking as a starting point the assumption that
the sources lie in the general area of the auditory cortex (an area of about 40 mm
by 15 mm), our approach is capable of achieving reasonable success in pinpointing
active sources with a resolution of a few mm and reducing the spatial distribution
and number of false positives to a very low level.

Key words: MEG, ill-posed inverse problem, clustering, filtering, maximum
entropy

1 Introduction

Magnetoencephalography (MEG) records magnetic fields generated from neu-
rons when the brain is performing a specific function. Neural activities thus
can be noninvasively studied through analyzing the MEG data. Since the num-
ber of neurons (unknowns) are far larger than the number of MEG sensors
(knowns) outside the brain, the problem of identifying activated neurons from
the magnetic data is ill posed. The problem becomes even more severe when
noise is present.

A first and essential step in surpassing the obstacle of ill-posedness is to rely
on prior knowledge of the general area of active current sources producing the
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MEG data. Often, this prior knowledge is provided by functional magnetic
resonance imaging (fMRI) experiments. The two kinds of experiments com-
plement each other, MEG has high temporal resolution (about 10~3s) but poor
spatial resolution, whereas fMRI has high spatial resolution (C.T.W. Moonen,
1999) but poor temporal resolution (about 1 s). Consider auditory neural ac-
tivity. FMRI shows that such activity is concentrate in the auditory cortex,
two 40 mm by 15 mm areas respectively located on the two sides of the cortex
(Fig. 1L). Because of poor temporal resolution, fMRI cannot resolve the rapid
successive firing of the (groups of) neurons, instead it shows large areas of the
auditory cortex lighting up. Under MEG, the same auditory activity will be
detected by high time-resolution sensors (Fig. 1R) which however collectively
cover an area (when projected down to the cortex) much greater than the
auditory cortex.

Although many methods have been proposed to attack the ill-posed problem,
including dipole fitting, minimum-norm-least-square (MNLS) (J.-Z. Wang,
1993), and the maximum entropy method (ME) (E. L. C. Amblard, 2004),
improvements have been limited. One reason for this may be that these meth-
ods do not properly include anatomic constrains. In this work, we propose a
novel approach to analyze noisy MEG data based on ME that pays special at-
tention to obtaining better priors as input to the ME procedure by employing
clustering and forward and backward filtering processes that take anatomic
constrains into consideration. We demonstrate the feasibility of our approach
by testing it on several simple cases.

2 The ill-posed inverse problem

Given the set of current sources (dipole strengths) {r;|i = 1,2,--- N, } at
sites {z;|i = 1,2,---, N,.}, the magnetic field strength m(x) measured by the
sensor at spatial position x is given by,

where the function A(x);, which is a function of z;, is derived from the Biot-
Savart law in vacuum, n(x) is a noise term, and a hatted symbol denotes an
N,-component vector in source space. We consider the case where there are
N, sensors at locations x,, a=1,2,--- | N,,,. To simplify notation, we write m
as an N,,-component vector whose o!”

X component is m*=m(x,,), similarly for
A and n. Then Eq. (1) simplifies to

A

m=A-7+n (2)



In practice, magnetic field strengths are measured at the N,, sensors and the
inverse problem is to obtain the set of N, dipole strengths r; with N, >> N,,.
The presence of noise raises the level of difficulty of the inverse problem.

3 Methods

Human Cortex and MEG Sensors. In typical quantitative brain studies,
the approximately 10'° neurons in the cortex are simulated by about 2.4x10°
current dipoles whose directions are set parallel to the normal of the cortex
surface (MRIdatabase, 2006; C.A. Cocosco, 1997; R.K.-S. Kwan, 1999, 1996;
D.L. Collins, 1998; P. Nunez, 1981). For this study we focus on the auditory
cortex, the area marked by the 40 mmx 15 mm rectangular shown in Fig. 1L
that contains 2188 current dipoles.

In typical MEG experiments the human head is surrounded by a hemispheric
tiling of magnetic field sensors called superconducting quantum interference
devices (SQUIDS). In the experiment we consider, there are 157 sensors, each
composed of a pair of co-axial coils of 15.5 mm diameter 50 mm apart, with
the lower coil about 50 mm above the scalp (H. Kado, 1999). The centers of
the sensors are represented by the gray dots in Fig. 1R. Details of geometry
and of the A-matrixes in Eq. (1) are given by H.-I1. Bai (2003).

Artificial MEG data and Noise. We use artificial MEG data generated
by the forward equation, Eq. (1), from sets of current dipoles (to be specified
below) in a small area (black circles in Figs. 2R) within the auditory cortex
(the gray "rectangular” region in Figs. 2L, enlargement shown in Figs. 2R).

A site-independent white Gaussian noise is linearly superimposed on the MEG
data. The signal to noise ratio (SNR) is defined as

SNR = —10logio||0maz||* /|| Mmaz]| |* (3)

where m,,,, is the amplitude at the sensor receiving the strongest noiseless
MEG signal, and n,,,, is amplitude of the strongest simulated noise. In this
study we have my,,,=7.4 fT (fT= femto-Tesla) and n,,,,=0.05m,,,,,=0.37 {T,
so that SN R=26 on each individual run. The artificial MEG data is generated
by giving a current of 10 nA (nano-ampere) to each of the sources in a source
set (see below), running the forward equation with noise 10 times and taking
the averaged strengths at the sensors. The averaging has the effect of reducing
the effective n,,., by a factor of v/10, and yielding an enhanced effective signal
to noise ratio of SNR'=36.

Using a threshold of Ts=14n,,,,=5.1 fT we select a subset Mg of 7 "strong



signal” sensors. This implies a minimum value of SN R'=32.9 (with averaging)
on each sensor in the set. Given the (assumed) normal distribution of noise
intensity, this selection implies that at 99.99% confidence level the signals
considered are not noise. Similarly we use a threshold of To=6n,,,,=2.2 T
to select a subset Mg of 31 "clear signal” sensors, with minimum values of
SN R'=25.6 on each sensor in the set. In actual computations below, we reduce
the sensor space to one that include only those in the set M. In practice, the
reduction replaces m, A, and n by m’, A’, and n’, respectively.

Receiver Operating Characteristics Analysis. We evaluate the good-
ness of our results using receiver operating characteristics (ROC) analysis (T.
Fawcett, 2004), in which the result is presented in the form of a plot of the true
positive rate (S, sensitivity) versus the false positive rate (or 1-S,, where S, is
the specificity). Let R be the total solution space of current sources, T the true
solutions, or actual active sources, and P the positives, or the predicted active
sources. Then F=R-T is the false solutions, TP=(PNT) the true positives,
FP=(PNT)-T the false positives, and FN=R-(PNT) the false negatives. By
definition S, =TP/T=(PNT)/T and 1-S,=FP/F=((PUT)-T)/(R-T). In-
tuitively, a good solution is one such that maximizes S,, while minimizing 1-.5,.
In a null theory, the positives will fall randomly into R, hence T'P/T'=1-S,, or
Sp=1-S,. Therefore, the merit of model producing a piece of data, (5, 1-5,),
showing on an ROC plot is measured by the difference between S,, and 1-S,,.
In general, when a model is used to generate a curve in an ROC plot, the ”area
under the curve” (AUC), or the area between the curve and the S, =1-5, line,
is a measure of merit of the model (E. DeLong, 1988).

Clustering and Sorting. Although implicit in the MRI head model intro-
duced in Fig. 1 is a dramatic reduction of the number of neurons and the
complexity of the cortex, the remaining number of effective neurons is still far
greater than the number of detectors. We use a clustering algorithm (L. Kauf-
man, 1990) to further decrease the number of effective sources, in which the
sources are partitioned according to spatial proximity and similarity in orien-
tation into the set of N¢ clusters C' = {Cylu = 1,2,--- , No}, as follows. We
require sources within a cluster to lie with a spatial radius of 5 mm and define
(Ny = Yicc, is the number of current sources in cluster C,,)

A=Y A (4)

i€Cy
as the ”strength” of the A-matrices in cluster C,,,

dy = Z |NuA/i _A;|/Nu (5)

i€Cly



as the "radius” — in the space of sensors — of cluster C,, and

= > A = AL|/(Ne — 1) (6)

Cyel

as the average inter-cluster distance between C, and all the other clusters.
The clustering, including N, is determined by requiring that

du/Du<fVC’ vu:1727'”7NC7 (7>

where ¢ is a parameter that controls the average cluster size; a smaller value
of v¢ implies smaller and more numerous clusters. In the limit yo—0 every
cluster will consist of a single source and No— N,., or 2188 in the present case.
A clustering obtained with vc=1/7 was used in this work. It partitions the
2188 sources into No=250 clusters, whose size distribution is shown in Fig. 3.

The clustering results in the replacement of original source distribution by a
coarse-grained distribution of virtual source-clusters whose N, A’;-matrices
are given by N¢ Al’s. The clustering reduces Eq. (2) to

m' = A e +n (8)

which has the same form as Eq. (2) except that here the hatted vectors have
only N¢ components and each of No components in 7 denotes the strength
of the current dipole representing a cluster.

It is convenient to sort the cluster set C' according to the field strength of
the clusters. Since the field strength depends on the where it is measured, the

sorted order will be sensor-dependent. We denote the sorted set for sensor «
by Cte}. Thus we have:

cfey — {Cuilua =1,2,--- | Nc}, A, | > A, |if ug <vs, Vo€ M.
(9)

Forward Filtering. A key in improving the quality of the solution of an
inverse problem is to reduce the number of false positives. In the MEG ex-
periments under consideration, the plane of the sensors are generally parallel
to the enveloping surface of the cerebral cortex. Such sensors are meant to
detect signals emitted from current sources in sulci on the cortex, and are not
sensitive to signals from sources in gyri. In practice, in our test cases T' will
be composed of sulcus sources. Therefore, if we simply remove those clusters
having the weakest strengths, we will reduce F'P at a higher rate than TP.

Given a positive fractional number £ < 1, we use it to set an integer number
N¢ < Ne, and use N¢ to define the truncated sets

R = {Culua=1,2,--- ,N¢}, YaeMs (10)



The integer N¢ is determined by regression by demanding the union set

Re= |J R =¢R (11)

aEMg

to be a fraction & of R. We call this forward filtering process of reducing the
pool of possible positives from R to R¢ the "mostly sulcus model” (MSM).
About 25% of current sources in R lie in gyri. Therefore, if we set £=0.75, very
few potentially true sources will be left out. It turns out that in the region
where 1-5), is only slightly less than unity, setting P to R¢ can offer the best
result.

Backward Filtering. Another way of reducing the pool of positives is to
limit them to those clusters, with unit current strength, whose |A’| value is
greater than a threshold value Ag at all the sensors in Mg. This yields, for
each a, a reduced set with N, < N¢ clusters:

R{>a} = {CUa|ua = 1727 e 7Na}a7 Vae MS' <12>

Now we let Rgyar, the pool of positives for the ”simple head model” (SHM),
be the intersection of the reduced sets,

Rsgy = () RY. (13)

aeM

Rgspgar represents a coarse-grained, simplified cortex tailored to the MEG data
at hand: every source-cluster in Rggys has a relatively high probability of
contributing significantly to all the sensors in Mg. A hypothetical case in
which Mg is composed of the two sensors, a; and as, is depicted in Fig. 4.

For this paper Ay is set to be 4.5 fT. Then the N,’s have values 113, 134, 102,
126, 103, 119, and 64, respectively, for the 7 sensors in Mg, and the simple
head model set Rgpar contains 240 source currents, or about 11% of the total
number of current dipoles in the auditory region.

The Maximum Entropy Method. The maximum entropy (ME) method
is a method for deriving the "best” solution in ill-posed problems (E. L. C.
Amblard, 2004; C. J. S. Clarke, 1989; L. K. Jones, 1989, 1990; I. Csiszar, 1991;
F. N. Alavi, 1993; D. Khosla, 1997; G. Le Besnerais, 1999; R. He, 2000; H. Gzyl,
2002). Generally, the equation that admits multiple solutions is treated as a
constraint and, given a prior probability distribution of solutions, the method
finds a posterior probability distribution by maximizing the relative entropy
of the probability distributions. When applied to the MEG case, Eq. (8) (or
Eq. (2) without clustering) is used to constrain the posterior propbability
distribution for a 7 that is the “best” ME solution, given m (measured) and n
(presumed or otherwise obtained). The procedure is tedious but standard and



an implementation was reported by H.-I. Pai (2005). Here we only describe
how the prior probability distribution of solutions are determined in this work.

We test several procedures ranked by their levels of complexity: (1) Simple
ME (ME). All the 2188 individual dipoles are included in the prior P. Here as
in all other cases, in ME iteration involving sensors, only those in the ”clear
signal set” M¢ are included. (2) ME with clustering but not filtering (C-ME).
Cluster are treated as units of sources and all clusters are included in the
prior P. (3) ME with filtering but not clustering (F-ME). Individual dipoles
are treated as units of sources but only those in R, or Rgyys (whichever is the
smaller set) are included in the prior P. (4) ME with clustering and filtering
(C-F-ME). Cluster are treated as units of sources but only those in R or
Rspy are included in the prior P. Fig. 5 is the flowchart for computation for
the above procedures. In each case the set of positives, P, hence S,, is varied
during the implementation of ME by a threshold on the strength of source
dipoles for acceptance into the set. The exception is when the ”"F” procedure
is taken. In this case, when 0<5,<0.25, the set of positives, P, is directly set
equal to R as described in Eq. (11), without going through the ME procedure.
When 5,>0.25 the procedure is switched to SHM followed by ME. In addition,
we compare ME and MNLS (J.-Z. Wang, 1993). When MNLS is involved the
flowchart is the same as given in Fig. 5, with ME replaced by MNLS.

4 Results and discussions

We report three preliminary tests exploring the properties of the procedures.

Test 1. The true set T' is one cluster containing 13 sources covering an area
of 4 mm by 1 mm (Fig. 6L). The computed results, shown as an ROC plot,
are given in Fig. 6R.

Not shown are results 1-S5,>0.20, when all four procedures give S, =1. It is
seen that C-F-ME gives the best result: S,=1 for the entire range of values
for 1-S,. C-ME and F-ME are excellent when 1-5,>0.025, but completely fail
to identify the true sources when 1-5,<0.025. In comparison, ME performs
not as well as C-ME and F-ME when 1-5,>0.025 but is better when smaller
values of 1-S,. Note that the R set contains 2188 sources and the T' set 13
sources. So even at 1-5,=0.025 there are still 54 false positive (F'P) sources.

Test 2. The true set T is composed of two clusters containing 12 and 7
sources, respectively, covering an area 5.5 mm by 1 mm (Fig. 7L). The ROC
plot (Fig. 7TR) shows better results are obtained when F is involved (F-ME
and C-F-ME). When clustering is involved (C-ME and C-F-ME) changes in
S, are discrete. This is because P may take only take four values, 1 when P



contains both true clusters, 0.63 or 0.37 when it contains of the two, and 0
when it contains none.

Recall that clustering simplifies the organization of the sources (R) but does
not reduce the prior positives (P). F reduces the prior P but does not simplify
R. C-F does both. That procedures with F are clearly better than those with-
out highlights the paramount importance of a better prior in all but trivial
situations when ME is employed.

Test 3. The true set T is composed of 42 active sources covering an area
approximately 3 mm by 2 mm (Fig. 8L).

They are distributed in eight clusters (C,, u=1 to 8) containing 18, 31, 15,
12, 9, 23, 18, and 17 sources, respectively, for a total of 143 sources. The
intersection of these clusters with T are 4, 11, 4, 3, 4, 4, 6, and 6 sources,
respectively. If clustering is applied, the minimum value for 1-S), is 0.047 when
Sp=1. The ROC shown in Fig. 8R shows that for this relatively complicated
case simultaneous high S,, and S, is difficult to achieve; we obtain 5,,<0.6 for
1-5,<0.20 in all procedures. Here again, procedures with F, which generate
better priors, yield more accurate positives than those without. It is worth
pointing out the accuracies of the positives given by F-ME and C-F-ME are
very similar in almost the entire range of 1-S,, but F-ME is decisively better
than C-F-ME when 1-5,, is less than 0.01. The last effect brings out an inherent
weakness of clustering. If the active sources (the 7" set) are spread out in more
than one cluster and and if the union of the clusters is greater than the T
set, then a solution with a non-null P (S5,#0) and null F'P (1-5,=0) is not
possible. In contrast, such an outcome is at least possible without clustering.
As it happened, for the case at hand, at 1-S,~0, the P set for C-F-ME is
cluster Cy with 12 sources, of which 3 belongs to 7', yielding S,,=3/42=0.071
and 1-5,=9/2146=0.0042.

Fig. 9 shows the 21 strongest sources (the ”strong set”), not necessarily all
in the positive set, given by the four procedures when 1-5,<0.02 (the sets do
not change much in this range of 1-S,). In the case of C-F-ME (panel (a)),
the strong set comes from clusters C5 and Cy, both of which lie in the vicinity
of T. When 1-5,, is lowered (by raising the P-acceptance threshold) beyond a
certain point Cj is eliminated, leaving only Cy in P in the situation discussed
above. In the case of F-ME (panel (b)), some individual sources in the strong
set are not in the vicinity of T'. However, these are eliminated when 1-S, is
lowered, and the remaining individual sources happen to have a F'P that is
smaller than that in C-F-ME.

ME versus MNLS. We compare the effectiveness of the MNLS procedure
against ME using the true set of test 3. Fig. 10L shows the ROC plots for C-F-
ME (same plot as in Fig. 8), C-F-MNLS and MNLS. We observe that MNLS



is worse than ME (Fig. 8), C-F-MNLS is better than MNLS, and C-F-ME is
better than C-F-MNLS. This shows, at least for the case tested, clustering is
also beneficial to MNLS and, other things being equal, ME is more effective
than MNLS. In the last instance the F'P’s of MNLS cover a large area of the
auditory cortex.

The strong sets in the three procedures are given in Fig. 10R. If we take these
dipoles as the positive set then we obtain the results given in Table 1.

In summary, we have employed several simple cases to illustrate that even
when we may use fMRI data to tell us where the general region of the source
currents is, the nature of the inverse problem is such that the challenge to
precisely pinpoint sources with a resolution of a few mm is still great. We
showed that clustering tends to limit the area covered by false positives, and
filtering is effective for generating better priors for ME. When we use ME
implemented by these procedures, we can achieve partial success in pinpointing
sources concentrated in an area the size of a few mm across, while reducing
the spatial distribution and number false positives to a very low level. We
note that the area of the active sources is miniscule compared to the auditory
cortex, which is itself yet much smaller than cortical surface covered by the
sensors receiving clear or even strong signals. Thus, at least in the case of
one compact set of active sources, our method can achieve a spatial resolution
comparable to that of fMRI (C.T.W. Moonen, 1999). On the other hand,
there is still much room for improvement. For example, if the method is to be
equally successful in the case of two sets of active sources separated by, say, a
few cm, then the procedure of backward filtering may need to further refined.
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6 Tables

C(luster) F C-F

Sp, ME  0.000 0.048 0.119  0.167
MNLS  0.000 0.000 0.048  0.000

1-5, ME  0.0096 0.0087 0.0073  0.0064
MNLS  0.0096 0.0096 0.0087  0.0096

Table 1
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7 Figures
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8 Legends

Table.1:Comparisons of ME and MNLS using the set of 42 active sources of test
3. In each procedure the positive set is composed of the 21 current dipoles with
the strongest currents. The third column gives results with neither clustering
nor F.

Figure.1: Left, side view of the human cortex; the frontal lobe points to the left.
The region of interest, the auditory cortex, is marked by the dark rectangular.
Right, schematic setup of an MEG experiment. The occipital lobe (right side
in graph) is closer to the sensors because the person being tested is lying
face-up.

Figure.2: Left, the circular and triangular symbols are the positions of the
31 sensors with detectable signals, including the 7 (triangular) with signals
above threshold. Sensors with magnetic flux going into (out) the page are
solid (hollow). Right, detail of auditory cortex. The dark (orange in color)
circles in the top-right corner indicate the general area of active sources used
to generate artificial MEG data.

Figure.3: Distribution of cluster size in the clustering of 2188 sources into 250
clusters.

Figure.4: Illustration of backward filtering, when Mg is composed of the two
sensors, a; and ap. Both R,y and Ry,,) contain 3 clusters while Rgppy
contains only one cluster.

Figure.5: Data processing flowchart for producing a prior input for the maxi-
mum entropy method.

Figure.6: Left, true cluster set of sources (solid circles) in test 1. Right, ROC
plot for test 1.

Figure.7: Left, the two true cluster sets of sources (solid circles and hollow
squares) in test 2. Right, ROC plot for test 2.

Figure.8: Left, the 42 source dipoles in test 3. Right, ROC plot for test 3; only
results with 1-5,<0.2 are shown.

Figure.9: The strong sets (21 strongest sources) in test 3 at 1-5,<0.02. In each
case the gray (orange in color) blotch near the top-right corner is the T set of
42 active sources. (a) C-F-ME (solid squares). (b) F-ME (bullets). (¢) C-ME
(triangles). (d) ME (open circles).

Figure.10: Left, ROC plots for MNLS, C-F-MNLS, and C-F-ME. Set T is
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the 42 active sources of test 3. Right, the strong set (dark symbols) at 1-
S,<0.02. (a) C-F-ME (solid square); (b) C-F-MNLS (open circle); (c) CMNLS

(triangle). T is the set of grey (orange) circles near the top-right corner in
panels (a-c).

24



