What is Systems Biology?

HC Lee

Computational Biology Laboratory
Graduate Institute of Systems Biology and Bioinformatics
Department of Physics
National Central University

2009 10 11
What is Systems Biology?

• Hiroaki Kitano (Nature 2002, Science 2002) - Systems biology is an emerging field that enables us to achieve in-depth understanding (of biology) at the system level.

• Marc W. Kirschner (Cell 2005) – Systems biology is the study of the behavior of complex biological organization and processes in terms of the molecular constituents.
A historic perspective

- The “old fashioned” biology era
- The information era (> 1990)
- The systems era (> 2000)
The “old fashioned” biology era

• Rise of molecular biology 1953

• Single element issues – structure and function proteins & genes

• Many, many techniques invented and developed in 2nd half of 20th century
The information era

- Human genome project (>1990) led to avalanche of data
- Bioinformatics - creation and advancement of algorithms, computational and statistical techniques, management and analysis of biological data.
- Computational biology - hypothesis-driven investigation of a specific biological problem using computers towards discovery and the advancement of biological knowledge.
The systems era

- Systems issues: signaling, network, pathway, dynamics

- Integration of biological experiment, bioinformatics and hypothesis driven model analysis towards systems-level understanding
The interdisciplinary nature of systems biology

• The “old fashioned” biology era
 – Biology
 – Biostatistics – biological data\+ statistics

• The information era (> 1990)
 – Bioinformatics – biological data\+ computer
 – Theoretical/computational biology – biology\+ physics/models

• The systems era (> 2000)
 – Systems biology – biology\+ data\+ computer\+ statistics\+ physics/models
The section of DNA encoding a protein is a **GENE** (基因). When the protein is produced through transcription and translation the gene is **EXPRESSED** (表現).
Genome (基因組) and the computer have similar design concepts

Chromosome \leftrightarrow \text{Hard Disc}

Genes & other codes \leftrightarrow \text{Programs & documents}

Transcribe gene \leftrightarrow \text{Run program copy document}
A cell and a very large factory

Membrane ↔ Building
Genome ↔ Blueprint
Proteins ↔ Machines & workers
Chemical material ↔ Energy & supplies
Networks & pathways ↔ Physical plant
Regulatory system ↔ Switches & controls
Self supervised* ↔ Engineers/Supervisors
Proteins, energy, functions, etc. ↔ Products & services

*Regulatory and control system in cell is necessarily MUCH more complex than in any factory
A transcription factor (a protein) binds to the DNA at its binding site, thereby regulating the production of a protein from a gene.
There are positive and negative regulations

Negative regulation
Boudd repressor TF prevents txn

Positive regulation
Bound activator TF promotes txn

Life is self-organized, hence must have feedback mechanisms.
A regulatory gene network

Regulatory gene network for endomesoderm specification (from Eric Davidson)
Systems approaches to disease: In diseased cell, protein and gene regulatory networks DIFFER from their normal counterparts

A network perturbation model of galactose utilization in yeast

High-throughput experiments

• Microarray
 – clustering of expression profiles
 – gene-disruption data
• (protein–protein interaction) yeast two-hybrid data
• Many high-throughput experimental methods and equipments developed since Kitano’s 2002 paper
 – Mass spectrometry
 – Protein microarray
DNA Microarray

Revolutionized bio-technology; can simultaneously study the aberrant expression levels of thousands of genes.
Microfluidic and nanotechnology platforms for systems biology studies

(A) An integrated microfluidics environment for single-cell gene expression studies. (B) Array of nanomechanical biomolecular sensors. (C) An electron micrograph showing a library of 16-nm-wide silicon nanowire biomolecular sensors.
What can physicists do in Systems Biology?

- **Experimental**
 - Design of new methods for *in vivo* and *in vitro* measurement of biological systems
 - Studies of signaling and regulation
 - Life on chips; nano-biosensors

- **Theoretical**
 - Quantitative biology
 - High-throughput data analysis
 - Network classification and dynamics
 - Model and hypothesis concerning disease

- Many, many more ...
An Integrative Research Project @ SyBBi

Integrating DNA-array, protein-array, informatics, computation, and modeling for cancer diseases research

- Develop & manufacture new protein-probe chip for high-throughput application
- Study dynamics of and disease-induced aberration in biological pathways
- Develop integration research protocol
- Model: colon cancer cell line

國科會自然處跨領域整合型計畫（2009－2012）
Connections among components

- Initial probe list
- Initial TF binding sites
 - Protein microarray Fabrication & application (SP3)
 - CCPC
 - TF sites
 - PPIN

- Bioinformatics Analysis (SP1)
- Literature
- Data analysis
- Database

- Colorectal cancer cell pathways & aberrations
 - Pathways
 - Aberration
 - Model/Dynamics

- Systems biology Application (SP4)

- Exon microarray Experiments (SP2)
 - Exon expression
 - Stress induced changes
 - Time course data

- Essay proteins
 - “Internet”

Data

Validation

Verification/integration

Data

Data analysis

Database

Literature

Pathways Aberration Model/Dynamics

Initial PPIN/pathways

Initial probe list

Initial TF binding sites
Website for many papers on systems biology

http://sansan.phy.ncu.edu.tw/~hclee/SB_course/index.htm
歡迎報考系統生物所