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ABSTRACT
Motivation: Traditional sequence distances require an
alignment and therefore are not directly applicable to
the problem of whole genome phylogeny where events
such as rearrangements make full length alignments
impossible. We present a sequence distance that works
on unaligned sequences using the information theoretical
concept of Kolmogorov complexity and a program to
estimate this distance.
Results: We establish the mathematical foundations of
our distance and illustrate its use by constructing a phy-
logeny of the Eutherian orders using complete unaligned
mitochondrial genomes. This phylogeny is consistent with
the commonly accepted one for the Eutherians. A second,
larger mammalian dataset is also analyzed, yielding
a phylogeny generally consistent with the commonly
accepted one for the mammals.
Availability: The program to estimate our sequence
distance, is available at http://www.cs.cityu.edu.hk/
∼cssamk/gencomp/GenCompress1.htm. The distance
matrices used to generate our phylogenies are available
at http://www.math.uwaterloo.ca/∼mli/distance.html
Contact: mli@wh.math.uwaterloo.ca

INTRODUCTION
The fast advance of worldwide genome sequencing
projects has raised a fundamental and challenging ques-
tion to modern biological science: how do we compare
two genomes? In fact, it earned the first position in two
recent lists of major open problems in bioinformatics
(Koonin, 1999; Wooley, 1999). Existing tools and meth-
ods such as multiple alignment and various sequence
evolutionary models do not directly apply to complete
genomes where such events as rearrangements make
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traditional full length alignments impossible, and no
statistical models currently exist for the evolution of
complete genomes.

In the absence of such models, a method which can
compute the shared information between two sequences is
useful because biological sequences encode information,
and the occurrence of evolutionary events (such as in-
sertions, deletions, point mutations, rearrangements, and
inversions) separating two sequences sharing a common
ancestor will result in the loss of their shared information.
Regions of sequences which do not share a common
ancestor will not share more information than would be
expected at random. Here we present a mathematically
rigorous universal distance based on shared algorithmic
information; a fully automated and accurate software
tool based on such distance to compare two genomes,
or two English texts for that matter; and we demonstrate
that whole mitochondrial genome phylogenies can be
reconstructed automatically from unaligned complete
mitochondrial genomes by our software.

METHODS
Definition of distance
We begin by defining what we mean by a distance.
Without loss of generality, a distance only needs to operate
on sequences of 0s and 1s since any sequence can be
represented by a binary sequence. We also only consider
normalized distance functions d such that 0 � d(x, y) �
1 for all sequences x and y. For a function d to be a
‘distance’, it must satisfy (a) d(x, y) > 0 for x �= y;
(b) d(x, x) = 0; (c) d(x, y) = d(y, x) (symmetric); and
(d) d(x, y) � d(x, z) + d(z, y) (triangle inequality).

Given two sequences x and y, our new distance d(x, y)

is defined as follows

d(x, y) = 1 − K (x) − K (x |y)

K (xy)
, (1)
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where K (x |y) is the conditional Kolmogorov complexity
(or algorithmic entropy) of x given y. K (x |y) is defined
as the length of the shortest program causing a standard
universal computer to output x on input y, and K (x) is
defined as K (x |ε), where ε is the empty string. See Li
and Vitányi (1997) for formal definitions of Kolmogorov
complexity and its successful applications in physics,
mathematics, and computer science. K (x |y) measures
the randomness of x given y. The numerator K (x) −
K (x |y) is the amount of information y knows about
x . It is a deep theorem in Kolmogorov complexity that
K (x) − K (x |y) ≈ K (y) − K (y|x) (Li and Vitányi,
1997). That is, the information y knows about x is equal
to the information x knows about y, for all x and y.
This is called mutual algorithmic information between
x and y. The denominator K (xy), being the amount of
information in the string x concatenated with y, serves
as a normalization factor such that the distance d(x, y)

ranges between 0 (when y ‘knows’ all about x) and
1 (when y ‘knows’ nothing about x). However, mutual
algorithmic information is not itself a distance and it
does not satisfy the triangle inequality. Clearly, d satisfies
distance conditions (a), (b), (c). It is not obvious that it
also satisfies (d). The following theorem answers this. All
(in) equalities are modulo an additive O(log n) term.

THEOREM 1. d(x, y) satisfies the triangle inequality,
that is, d(x, z) � d(x, y) + d(y, z).

PROOF. We need to show:

1 − K (x) − K (x |z)
K (xz)

� 1

− K (x) − K (x |y)

K (xy)
+ 1 − K (y) − K (y|z)

K (yz)
.

This is equivalent to, by the Symmetry of Information
theorem (Li and Vitányi, 1997),

K (z|x) + K (x |z)
K (xz)

� K (y|x) + K (x |y)

K (xy)
+ K (z|y) + K (y|z)

K (yz)
.

It is sufficient to prove the following two inequalities:

K (x |z)
K (xz)

� K (x |y)

K (xy)
+ K (y|z)

K (yz)
K (z|x)

K (xz)
� K (y|x)

K (xy)
+ K (z|y)

K (yz)
.

The two inequalities are symmetric. To prove the first,
let r = K (x |z), q = K (x |y), p = K (y|z). Obviously
r � p+q, by elementary facts in Kolmogorov complexity

(Li and Vitányi, 1997). Let r = p + q − �. Then,

K (x |z)
K (xz)

� r

K (z) + r

� p + q − �

K (z) + p + q − �

� p + q

K (z) + p + q

� q

K (z) + p + q
+ p

K (z) + p + q

� q

K (xy)
+ p

K (yz)

= K (x |y)

K (xy)
+ K (y|z)

K (yz)
.

This proves the first inequality. The second is proved
symmetrically. �

While it is true that when the quantities of Kolmogorov
complexity terms in the above proof are extremely small
(non-interesting case), then the above proof needs to be
more carefully formulated (Vitányi,P. personal communi-
cation). But to maintain clarity, we have chosen not to do
that, although a similar proof still works.

UNIVERSALITY
Now, consider any computable distance D. In order to
exclude degenerate distances such as D(x, y) = 1/2 for
all sequences x and y, we limit the number of sequences
in a neighborhood of size d. Let us require for each x ,

|{y : |y| = n and D(x, y) � d}| � 2dn. (2)

Assuming equation (2), we prove the following theorem.

THEOREM 2. For any computable distance D, there is
a constant c < 2 such that, with probability 1, for all
sequences x and y, d(x, y) � cD(x, y).

PROOF. By definition 1 and the Symmetry of Infor-
mation theorem, as in Theorem 1, we know that, up to
O(log n) factor,

d(x, y) = K (x |y) + K (y|x)

K (xy)
. (3)

Given D, using the density property in formula 2 and
the computable function D, we know that K (x |y) �
D(x, y)n, and K (y|x) � D(x, y)n. With probability 1,
K (xy) > n, noting |x | = n or |y| = n. Thus, equation 3
gives

d(x, y) = K (x |y) + K (y|x)

K (xy)
� 2D(x, y)n

n
= 2D(x, y),

with probability 1. This proves the theorem with c � 2. �
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This demonstrates mathematically the following: if x
and y are ‘close’ according to distance measure D, then
they are also ‘close’ according to our new distance d . In
other words, if D reveals some similarity between x and
y, so does d.

REMARK 1. Our distance d(x, y) naturally takes care
of some tricky problems which plague other stochastic
measures. For example, some methods might tend to
cluster all sequences with high G + C content together.
Since d(x, y) only measures the shared information, the
base composition bias gets naturally self canceled in the
K (x) − K (x |y) calculation (in our approximation, which
will be described in the next section, this is done by
arithmetic encoding). Therefore, unlike many stochastic
measures, our distance does not require that the sequences
obey the stationarity condition. This may also be viewed as
a consequence of the universality statement.

RESULTS
Whole genome phylogeny
With many genomes already sequenced, imminent com-
pletion of the human genome and the completion of many
other sequencing projects on the horizon, whole genome
analysis and especially pairwise genome comparison is
a great challenge in genomics (Koonin, 1999; Wooley,
1999). Already there have been proposals to compare
genomes using gene order (Boore and Brown, 1998)
and gene content (Fitz-Gibbon and House, 1999; Snel
et al., 1999). Such comparisons are time consuming as
they require gene identification. These distances, together
with G + C content; edit distance; and reversal and
rearrangement distances (Kececioglu and Sankoff, 1995;
Hannenhalli and Pevzner, 1995; Nadeau and Sankoff,
1998) compare genomes using only partial genome
information whereas our new distance uses all genome
information. The transformation distance (Varre et al.,
1998) and compression distance (Grumbach and Tahi,
1994) are essentially defined as K (x |y) which is badly
asymmetric, and so, is not a distance. Only when all
sequences are random, which is not the case for DNA
sequences do these two distances coincide with our new
distance. In fact, mathematically, all above distances can
be formulated as special cases of our new distance.

Kolmogorov complexity can be thought of as the
ultimate lower bound of all measures of information and
cannot be computed in the general case (Li and Vitányi,
1997). Therefore, our new distance must be approximated.

For this purpose, we use the program GenCompress
(Chen et al., 2000) which is currently the best compres-
sion program for DNA sequences, achieving the best
compression ratios for benchmark DNA sequences, to
heuristically approximate K (x |y), K (x), and K (xy).
GenCompress finds approximate matches (hence edit

distance becomes a special case), approximate reverse
complements, among other things, with arithmetic encod-
ing when necessary. GenCompress was implemented by
Chen et al. (2000) and can be downloaded from our web-
site. It is capable of compressing in a day the complete,
34 megabase human chromosome 22, (achieving 12%
compression).

To test our theory, we have performed several experi-
ments on the construction of whole genome phylogenies
using our new distance, all with very encouraging results.
Two such experiments follow.

Phylogeny of Eutherian orders
It has been debated which two of the three main groups
of placental mammals are more closely related: Pri-
mates, Ferungulates, and Rodents. This is because by
the maximum likelihood method, some proteins support
the (Ferungulates, (Primates, Rodents)) grouping while
other proteins support the (Rodents, (Ferungulates, Pri-
mates)) grouping (Cao et al., 1998). Cao et al. aligned 12
concatenated mitochondrial proteins from the following
species: rat (Rattus norvegicus), house mouse (Mus
musculus), grey seal (Halichoerus grypus), harbor seal
(Phoca vitulina), cat (Felis catus), white rhino (Cera-
totherium simum), horse (Equus caballus), finback whale
(Balaenoptera physalus), blue whale (Balaenoptera mus-
culus), cow (Bos taurus), gibbon (Hylobates lar), gorilla
(Gorilla gorilla), human (Homo sapiens), chimpanzee
(Pan troglodytes), pygmy chimpanzee (Pan paniscus),
orangutan (Pongo pygmaeus), Sumatran orangutan
(Pongo pygmaeus abelii), using opossum (Didelphis
virginiana), wallaroo (Macropus robustus) and platypus
(Ornithorhynchus anatinus) as the outgroup, and built
the maximum likelihood tree to confirm the grouping
(Rodents, (Primates, Ferungulates)). Using the complete
mitochondrial genomes of these species we computed
our new distance d(x, y) between each pair of species
x and y and constructed a tree (Figure 1) using the
neighbor joining (Saitou and Nei, 1987) program in
the MOLPHY package (Adachi and Hasegawa, 1996).
The tree is identical to the maximum likelihood tree of
Cao et al.

Because neighbor-joining is sometimes distrusted
(Hillis et al., 1994; Kuhner and Felsenstein, 1994), to
further corroborate this grouping we applied our own
hypercleaning program (Bryant et al., 2000) to the same
distance matrix and obtained the same tree. The hyper-
cleaning program constructs an evolutionary tree using
the edges best supported by all possible four taxa sub-
trees (commonly called ‘quartets’). Thus using the new
information-theoretic distances derived from the complete
mtDNA genomes we have re-confirmed the hypothesis
of (Rodents, (Primates, Ferungulates)). The distance
matrix can be found at our website (see the abstract).
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Fig. 1. The evolutionary tree built from the complete mammalian
mtDNA sequences of the taxa analyzed in Cao et al. (1998). The
numbers associated with each clade are the percentage of quartets
supporting the grouping according to the hypercleaning algorithm
(Bryant et al., 2000), and can be interpreted in a similar fashion to
bootstrap values.

The simple asymmetric measure K (x |y) leads to a wrong
tree using the same data and programs, as expected (data
not shown). The gene order (Boore and Brown, 1998) and
gene content (Fitz-Gibbon and House, 1999; Snel et al.,
1999) approaches, while yielding symmetric distances,
have the disadvantage of requiring laborious human
analysis of the sequences and also are unlikely to provide
enough information to distinguish closely related species
such as the above data set. Our method is fully automatic
and utilizes the information contained in noncoding
regions in addition to the information contained in the
genes.

To further assure our result, we have extracted the
coding regions only from mtDNAs of the above species,
and performed the same computation. We have obtained
the same tree.

Phylogenetic position of the rodents
We also analyzed a larger dataset derived from the 34-taxa
mitochondrial genome phylogeny in Reyes et al. (2000).

99

98

97

99

97

96
90

99

Fig. 2. The evolutionary tree built from the complete mammalian
mtDNA sequences of the taxa analyzed in Reyes et al. (2000). The
numbers associated with each clade are the percentage of quartets
supporting the grouping according to the hypercleaning algorithm
(Bryant et al., 2000), and can be interpreted in a similar fashion to
bootstrap values. Only values less than 100 are shown.

This dataset included 19 of the 20 taxa in Cao et al.
(1998) and the additional 15 taxa: aardvark (Orycteropus
afer), armadillo (Dasypus novemcintus), baboon (Papio
hamadryas), dog (Canis familiaris), donkey (Equus
asinus), dormouse (Glis glis), elephant (Loxodonta
africana), fruit bat (Artibeus jamaicensis), great rhino
(Rhinoceros unicornis), guinea pig (Cavia porcellus),
hedgehog (Erinaceus europaeus), hippo (Hippopotamus
amphibius), pig (Sus scrofa), rabbit (Oryctolagus cunicu-
lus), sheep (Ovis aries), and squirrel (Sciurus vulgaris).
This denser, more diverse, and more controversial dataset
yielded a distance matrix, which, when analyzed by
neighbor-joining and hypercleaning, resulted in two
somewhat different phylogenies. The consensus of these
two phylogenies is presented in Figure 2.
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While this consensus agrees with the overall structure
of the phylogeny presented in Reyes et al. (2000),
including the possible nonmonophyleticity of the rodents,
several discrepancies exist. In particular, our method
groups the pig with the perisodactyls rather than with
the cetartiodactyls, the carnivores form a ferungulate
outgroup, and the guinea pig groups with neither the
murid nor the nonmurid rodents. However, neither of these
latter two discrepancies are unreasonable hypotheses. The
outgroup status of the carnivores has been suggested by
Graur et al. (1997), and the phylogenetic position of the
guinea pig is one of the most controversial topics in
systematic biology (Graur et al., 1991; D’Erchia et al.,
1996; Cao et al., 1997; Sullivan and Swofford, 1997;
Reyes et al., 1998).

CONCLUSIONS
Our goal in this paper is not to confirm or refute previous
phylogenetic studies but rather to bring a new methodol-
ogy and a new tool to the comparative genomics research
community. Our new method for whole genome compari-
son and phylogeny does not require gene identification nor
any human intervention, in fact, it is totally automatic. It
is mathematically well-founded being based on general in-
formation theoretic concepts. It works when there are no
agreed upon evolutionary models, as further demonstrated
by the successful construction of a chain letter phylogeny
(manuscript in preparation by Bennett,C.H., Li,M., and
Ma,B.), and when individual gene trees do not agree (e.g.
Cao et al., 1998) as is the case for genomes. Another pos-
sible use of our method is as an evaluator of alignments,
as alignments with little shared information are unlikely to
yield meaningful phylogenies by any method. Although
a possible criticism of our method is that it is based on
information theory rather than a biological model, it is
worth stressing that the alignment algorithms that biolo-
gists use today are in fact also based on information the-
ory, although less rigorously.

The method depends on the ability to efficiently and
sharply approximate shared information, as this informa-
tion is not computable. Our preliminary experiments have
shown that our estimation approach is fruitful. However,
to improve our results we need a better conditional en-
tropy estimator of DNA sequences, as distances between
highly divergent sequences tend to be similar to each other
by our current estimator, making deep branches in phy-
logenies difficult to resolve. Still, our experiments have
demonstrated clearly that the method is useful even with
our current estimator. With a sharper conditional entropy
estimator, we believe that this method will accurately re-
cover whole organismal genome phylogenies as well.
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