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Abstract

This paper aims at understanding the statistical features of nucleic acid sequences from

the knowledge of the dynamical process that produces them. Two studies are carried out:

�rst, mutual information function of the limiting sequences generated by simple sequence

manipulation dynamics with replications and mutations are calculated numerically (some-

times analytically). It is shown that elongation and replication can easily produce long-range

correlations. These long range correlations could be destroyed in various degrees by muta-

tion in di�erent sequence manipulation models. Second, mutual information functions for

several human nucleic acid sequences are determined. It is observed that intron sequences

(non-coding sequences) tend to have longer correlation lengths than exon sequences (protein-

coding sequences).

�Present address: Box 167, Rockefeller University, 1230 York Avenue, New York, NY 10021.
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1 Introduction

Ever since terrestrial genesis, the molecules which are capable of replication have been playing an

essential role in life on earth. The replicators are basically nucleic acid sequences | 1-dimensional

strands consist of nucleotide bases. An arrangement of nucleotide bases on a nucleic acid sequence

is transformed into an arrangement of amino acid in the protein, which in turn determines the 3-

dimensional structure of the protein, and consequently, many aspects of the biochemical reactions

in biological systems. The arrangement of the nucleotide bases on nucleic acid sequences results

from more than three billion years of evolution (see, for example, [Watson et. al., 1987] [Horgan,

1991]).

Now, we ask the following question: can we understand why the nucleic acid sequences have

the arrangement of bases observed today? Or, can we understand the statistical features of these

nucleic acid sequences from some models of evolution? The question is similar to what has been

asked in cosmology on whether one can explain the galaxy distribution from the known physics

laws (e.g., gravitational interaction), evolutionary scenarios (e.g., expansion of the universe from

the big bang), and a set of simple assumptions (e.g., the initial condition of the universe). In

cosmology, it is a simple matter of setting up the model and the initial condition, running the

simulation on computer, and comparing the results with the observation data.

The research on the evolution of life is far behind that on the evolution of the universe. There

are several reasons for this. First, we do not have complete knowledge of the arrangement of the

nucleotide bases of nucleic acid sequences. There are, however, great e�orts towards improving

the situation, notably the human genome project [Watson, 1990]. Secondly, there is no simple

universal force, such as the gravitational interaction in the evolution of the universe, that controls

all aspects of the evolution of nucleic acid sequences. Thirdly, we still know very little about how

life started; that is, we do not have a good guess of the initial condition.

This paper attempts to make a very small contribution towards an ultimate answer of the

question. At one end of the matching between models and reality, I will study a few simple

sequence manipulation rules with only replications and mutations. Similar to the dynamical

systems with spatial degrees of freedom, where the randomness of the spatial con�guration can

sometimes be related to how chaotic the dynamical rule is, the statistical properties of the se-

quences generated by these simple rules are also crucially determined by the structure of the rule,

the parameter setting, and occasionally, the initial condition.

At another end of the matching, I will calculate the mutual information function [Shannon,

1948] [Shannon & Weaver, 1949] [Li, 1990], one of the most important statistical quantities of the
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sequence, of several nucleic acid sequences. Not completely surprising, the mutual information

function of a nucleic acid sequence has been found to depend on whether the sequence is a

protein-coding (exon) or a non-coding (intron) segment. It certainly hints that the dynamical

process which controls the updating of intron segments di�ers from that of exon segments.

The intention of the paper is not to claim that the models studied here can reproduce the

statistical properties of the current nucleic acid sequences. As the title suggests, the goal is

quite limited: I will examine the long-range correlations in nucleic acid sequences as produced by

elongation, or replication followed by a ligation. The presence or the absence, for that matter, of

long-range correlations then teaches us something about the dynamical process itself.

This paper is organized as follows: Section 2 will review the main statistical quantity to be

used in the paper | the mutual information function. The related de�nitions such as power

spectrum, 1/f spectrum, long-range correlation, and non-trivial long-range correlation will also

be given for easy reference; Section 3 will review some known results on the relation between

structure of the sequence manipulation rules and statistical properties of the generated sequences;

Section 4 will discuss four sequence manipulation rules with only replications (or elongations) and

mutations; Section 5 will present the results on mutual information functions of several human

nucleic acid sequences; Section 6 studies the 1=f spectrum in one of the intron sequences; and

�nally, section 7 contains discussions and possible future research directions.

2 Mutual information function: measure of correlation in

symbolic sequences

It is not clear what statistical property is most appropriate for characterizing a nucleic acid

sequence, and, by comparing this property of a nucleic acid sequence with the one derived from

the theory, for checking the validity of the theory. Some statistical quantities are too specialized

for our purpose, for example, the CG dimer (cytosine and guanine) density. One can imagine

many di�erent ways to modify the model to make a CG rich sequence, and we simply cannot

discriminate among these models by knowing this density only.

The single-site entropy can give much information on whether all symbols are equally used in

a sequence, but it does not say how symbols are arranged in the sequence. A better quantity is

the block entropy, which measures the degree of equal distribution of all blocks with a �xed length

[Shannon, 1948]. If block entropies are determined for all block sizes, the statistical feature of the

sequence is rather completely determined. Unfortunately, the block entropy cannot be calculated
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accurately for very large block lengths when the sequence length itself is limited. In previous

studies of the entropy of natural language texts (ranging from English [Shannon, 1951] [Cover &

King, 1978] to Arabic [Wanes et. al., 1976]) and nucleic acid sequences [Gatlin, 1966, 1968, 1972]

[Smith, 1969], the block length has never gone up to a very large value.

A better quantity to statistically characterize the arrangement of the nucleotide bases in the

sequence is the correlation function, de�ned as the correlation between two bases as a function of

the distance between them. There are several ways to measure the correlation of two variables,

for example, the average value of the product of the two variables subtracting the product of the

average value of each variable. If this de�nition of correlation is used, we have the conventional

autocorrelation function:

�(d) =
X
��

x�x�P��(d)� (
X
�

x�P�)
2; (1)

where x�'s and x� 's are all possible values of the variable, P� is the density of the symbol �

with value x�, and P��(d) is the probability of having a symbol with the value x� followed d

sites away by a symbol with the value x� . The autocorrelation function is widely used in the

correlation analysis in numerical sequences.

If the sequence is purely symbolic, there is no value attached to each symbol, and we measure

the correlation by mutual information [Shannon, 1948], and the correlation function becomes the

mutual information function [Li, 1990]:

M(d) =
X
��

P��(d) log
P��(d)

P�P�
: (2)

ZeroM(d) at some distance d implies zero �(d) at that distance, but the reverse may not be true.

As a consequence, mutual information function is a more sensitive measure of correlation than the

autocorrelation function. Note that because each of the log[P��(d)=P�P� ] term in the summation

is weighted by a P��(d), in certain approximations, the M(d) behaves like P��(d)
2 � const:

, whereas �(d) � P��(d) � const:. For more discussions on the relation between the mutual

information function and the autocorrelation function, see [Li, 1990].

There might be other de�nitions of the correlation function such as the one based on \Chi-

square" (e.g., Chapter 13 of [Press et. al., 1988]). To avoid confusion, I will use C(d) to represent

any one of them, i.e.,

C(d) = f�(d);M(d); � � �g: (3)

With correlation functions such as the mutual information function being de�ned, we can quanti-

tatively de�ne terms such as long-range correlation, non-trivial long-range correlation, correlation
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length, 1/f spectrum (1/f noise), etc.

First of all, the sequences with long-range correlations are those whose C(d)'s decay very

slowly and remain at non-zero values at some large distances. It includes the case of the periodic

sequences, whose C(d)'s have peaks when the distances are equal to the multiples of the period-

icity. We do not need exact periodicity for having this long-range correlation; an approximate

periodicity is good enough. Because there is nothing profound about the periodic structures, we

consider these long-range correlations to be trivial.

Sometimes, the C(d) is non-zero at almost all larger d's, with no dominant peaks in C(d).

Such slow decay of the C(d) can usually be approximated by power law functions (algebraic

decay) | 1=d�. In particular, if the decay is so slow that the exponent � is close to zero (when �

is exactly equal to zero, C(d) decays slower than any power law functions; they are, for example,

logarithmic functions), the sequence can be called 1=f noise because its power spectrum behaves

like 1=f , where f is the frequency. 1=f spectrum will be mentioned again in section 4 and section

6.

If the decay of C(d) is fast, it can be approximated by an exponential function: e�d=d0 , where

d0 is called the correlation length because the correlation value becomes very small as d > d0.

In a numerical calculation of C(d), one might observe that C(d) is almost zero beyond certain

distance d00, and this distance is sometimes used as an estimate of the correlation length d0.

In the next section, I will review the results concerning which dynamical systems typically

produce sequences with exponential decay correlation functions, and which produce sequences

with algebraic correlation functions. These results provide a potential method for inferring the

underlying dynamical process from the observed data sequences.

3 Di�erent dynamical models generate sequences with dif-

ferent correlation functions

In cosmology, it is known that statistical features of galaxy distribution such as the power law two-

point correlation function are the results of the expansion of space, the long-ranged gravitational

interaction, and the initial stages of the big bang which determined the starting con�guration.

Varying either one of the conditions, one may not reproduce the statistics in the observational

data. Similarly, for dynamical systems applied to 1-dimensional sequences, it is important to

know the dynamical rule (how the symbols in the sequence are updated), the initial condition,

and whether or not the sequence length is changed, in order to determine the statistical properties
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of the sequence.

In the following, I will review three types of sequence manipulation rules: (1) those putting

symbols sequentially with short memories; (2) those updating sequences parallelly according to

local dynamics with the sequence length �xed; and (3) those updating parallelly according to

local dynamics with the sequence length increased. Obviously, these three types represent only

a small portion of all possible sequence manipulation rules. Other sequence manipulation rules

will not be discussed in detail in this paper, since I cannot provide general conclusions concerning

the statistical properties of the limiting sequences, except for simulating the rule on case-by-case

bases. There are, however, some discussions in the next section on rules which link the copied

sequence with the original sequence (then the dynamics is not local), and a passing mentioning

in the last section on sequence manipulation rules with high-level control, and the dynamics of a

population of sequences.

(1) The �rst type of sequence manipulation rules is actually \sequence-producing rules." The

symbols are added one by one at the end of the sequence with the rule having a short memory of

what has already been in the sequence. This class includes the well-known Markov chains [Karlin,

1968] [Karlin & Taylor, 1981] and regular languages [Hopcroft & Ullman, 1979]. In the 1-step

Markov chains, the probability of having a particular new symbol in the end of the sequence

depends only on the last symbol already in the sequence. All such probabilities are included in

the Markov transition matrix, and the correlation function C(d) behaves like �d = e� log(1=�)d,

where � is the largest eigenvalue (excluding the trivial eigenvalue equal to 1) of the Markov

transition matrix [Karlin & Taylor, 1981].

Regular languages, studied in the framework of the formal language theory [Hopcroft &

Ullman, 1979], are very similar to Markov chains. The di�erence between the two is that in

regular languages, the probability of a symbol to be followed by another symbol depends on the

\history", which can be determined by checking the grammar of the regular language, usually

represented by a directed graph. A regular language can become a Markov chain by increasing the

number of symbols | so that the same symbol with di�erent histories is considered as di�erent

symbols, or by increasing the memory | so that a �nite block rather a symbol determines the

probability of having a new symbol. The calculation of C(d) for sequences generated by regular

language grammars is more complicated (one has to increase the number of the symbols and make

the transition matrix larger, then degenerate these symbols again; see [Li, 1987] for details), but

again C(d) behaves like �d, with � as the largest eigenvalue (excluding the value of 1) of the

expanded transition matrix.
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Formally speaking, Markov chains and regular languages always produce sequences with ex-

ponentially decayed C(d). Nevertheless, if the largest non-trivial eigenvalue of the transition

matrix is very close to 1, the correlation length d0 � 1= log(1=�) can be extremely long, and by

the Taylor expansion of the exponential function, C(d) can decay as a linear function. The power

spectrum corresponding to this linear C(d) behaves like 1=f2 (see, e.g., appendix of [Li, 1991b]).

Also note that when the largest non-trivial eigenvalue is negative (largest in magnitude), C(d)

oscillatory.

(2) The second type of the sequence manipulation rules can be considered as one of the spatially

extended dynamical systems, which include coupled maps, coupled oscillators, and for an example

of the real system, the turbulence 
ow. One starts from an initial sequence whose length is �xed

during the dynamics, and updates the sequence by local rules. The best example of this type of

rules is the cellular automata [von Neumann, 1966; Wolfram, 1983; To�oli & Margolus, 1987].

For each symbol in the sequence, by examining the local con�guration around that site and

checking the rule table which tells what new symbol will replace the old one according to the

local con�guration, one can update all symbols in the sequence one by one.

The statistical properties of the limiting sequence depend on what the initial sequence is,

and which cellular automaton rule is applied. Suppose the initial sequence is random with no

correlations, the only thing that determines the statistical properties of the limiting sequence

is the rule table. The connection between the rule and the correlation function of the limiting

sequence is studied in [Li, 1987]. In particular, it is known that if the dynamics is periodic

(i.e., the sequence repeats itself, with or without a spatial shift, after a �nite number of time

steps), the limiting sequence can be characterized by some regular language grammar [Wolfram,

1984], and by our previous discussion, the correlation function is exponential (either monotonic

or oscillatory).

Generally speaking, if a cellular automaton rule is capable of generating correlation length

much longer than the range of local coupling, that rule will have other interesting properties such

as long transient times, marginal instability with respect of perturbations, and poor convergence

of most of the statistical quantities. The rule can then be said to be on the \edge of chaos." In

fact, the existence of a large value of correlation at long distances is used to locate the region of

the cellular automata rule space where the transition from periodic to chaotic dynamics occurs

[Li et. al., 1990].

(3) The third type of the sequence manipulation rules contains rules that update symbols ac-

cording to local dynamics and the sequence length is increased at the same time. One might
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call them context-sensitive Lindenmayer systems [Lindenmayer, 1968] or context-sensitive \de-

velopment systems" [W�egzyn et. al. 1990], or perhaps \expanding cellular automata". These

systems are rarely discussed from the perspective of the statistical properties of limiting sequence.

Even simple context-sensitive Lindenmayer systems contain huge number of possible rules. For

example, in 2-symbol 3-input context-sensitive Lindenmayer systems, suppose each symbol will

expand to a block with two symbols, the total number of the possible rules is 48 = 65536 (8

possible input con�gurations and 4 possible expanded blocks). This number is much larger than

the number of rules for 2-symbol 3-input cellular automata which is 28 = 256.

A direct consequence of elongation of sequences is that it is quite easy to generate long-range

correlations, even if there is no local interaction (context-free)! In the examples to be discussed

in the next section, the correlation function of the limiting sequence can be a power law function

1=d�, � � log(�)= log(k), where � is the largest non-trivial eigenvalue of the transition matrix

(to be de�ned later) and k is the average elongation ratio. This result seems to be applicable to

a large class of context-free Lindenmayer systems.

4 Four sequence manipulation rules with replication/elongation

and mutation

One plausible picture of the prebiotic evolution is that �rst, mononucleotides were condensed into

short polymers (oligonucleotides), and some of them happened to be able to replicate, making

more copies of themselves. Then, the polymerizations, ligations, cleavages and other reactions

occur constantly in a population of mononucleotides, oligonucleotides and polynucleotides, and

the average sequence length becomes longer and longer. Some much simpli�ed model based on

the above picture has been studied, and it has already shown an enormous amount of complexity

[Kau�man, 1986] [Farmer et. al., 1986] [Bagley, 1991].

Here I will not attempt to propose a realistic model for the prebiotic evolution for a population

of sequences. Instead, I will concentrate on models with only replications and mutations, and

assuming that if a symbol does not make a copy of itself, it will mutate. In other words, the

probability of having replication preplication is 1 � pmutation, with pmutation as the probability

for mutation. Certainly it is not the best assumption because there should be a probability

for neither replication nor mutation, i.e., preservation. The advantage for assuming only two

operations is that there is only one parameter to tune.

The four sequence manipulation rules with replication/elongation and mutation are: (1) the
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monomer replicates and the extra copy is inserted back to the sequence causing local elongation;

(2) similar to the �rst case but specifying that the replication is complementary; (3) the whole

sequence replicates and the copy is ligated to the original sequence; and (4) similar to the third

case but specifying that the replication is complementary. All the replications are not perfect

with a chance of having mutations.

(1) The �rst model is the following: suppose there are two symbols in the sequence, a and b; at

each time step, each symbol can either expand to two same symbols (with probability 1� p), or

mutate to another symbol (with probability p). The expansion part can also be pictured as a

symbol replicating an extra copy of itself and then that copy is inserted near its parental symbol.

Perhaps elongation is the better word than replication to describe the process. In formula, the

model is:

a !

(
aa : 1� p

b : p
;

b !

(
bb : 1� p

a : p
: (4)

Fig.1 illustrates a particular realization of the above sequence generation process.

This model is �rst proposed by the author as a model for spatial 1=f spectra in open dynamical

systems [Li, 1989a]. More details of the model are discussed in [Li, 1991a]. I will not repeat all

the details here, only enough to outline the basic features which are essential to the main theme

of this paper.

Eq.(4.4) is a probabilistic context-free Lindenmayer system. Even though there is no inter-

action among the symbols, i.e., context-free, the rule can still generate long-range correlations

purely by elongation. To be more speci�c, suppose the joint probability for two symbols of type

� and type � separated by a distance d is P��(d); P��(d)
t at time t leads to P�0�0(d0)t+1 at

time t + 1 by the updating. We have d0 > d because of elongation, and �0 and �0 can be any

two symbols that are di�erent from the type � and type �. The most general expression for the

updating of P��(d) is a multi-distance matrix equation:

P�0�0(d0)t+1 =
X
d

X
��

T (��d! �0�0d0)P��(d)
t; (5)

where T (��d! �0�0d0)'s comprise the transition matrix (note: the transition matrix in Markov

chains characterizes the transition from one symbol to another; here, the transition is from one

symbol pair to another symbol pair).
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The invariant solution of Eq.(5) fP��(d)g, or simply P (d), is a self-consistent, multi-scaling

function, and each scaling exponent is related to the largest non-trivial eigenvalue for the tran-

sition matrix T (��d! �0�0d0) bridging the distances d and d0.

To approximate the multi-scaling function with a single scaling function (or almost single

scaling function), assume that on average, the distance d is elongated to the distance kd, where k

is the average elongation ratio. For Eq.(4.4), k = 2� p. Furthermore, assume that distances d0's

around the distance (2�p)d also contribute to the scaling function. With all these approximations,

it can be shown [Li, 1991a] that the joint probability behaves like

P (d) �
1

dc
with c =

P
d0�kd log(�(d

0))

log(k)
; (6)

and for Eq.(4.4)

c � 1�
log(2� 3p)

log(2� p)
: (7)

The autocorrelation function is proportional to the joint probability and the mutual informa-

tion function is roughly proportional to the square of the joint probability, so they all decay as

power law functions. When the mutation probability p is very small, c � 0. It means the corre-

lation function decays extremely slowly. To check this, I plot the mutual information function in

Fig.2 (in log-log scale) for sequences generated by Eq.(4.4) at two di�erent mutation rates. The

power law decay of M(d) with small exponent is indeed observed.

It is known that if the correlation function is 1=dc (0 < c < 1), the power spectrum which is

the Fourier transformation of the correlation function is 1=f1�c (f is the frequency). If c � 0,

then 1 � c � 1, and the power spectrum is called 1=f spectrum, or 1=f noise if the phase

spectrum is random. The curious thing about 1=f noise is that it appears almost everywhere

[Press, 1978; Musha, et. al., 1991]. Our model suggests that it is possible to �nd spatial 1=f

spectra in sequences produced by elongation and mutation, which perhaps provides an insight

into the result to be presented in section 6.

(2) The second model is similar to the �rst, except that each symbol replicates a symbol that is

complementary to itself (e.g., symbol a makes a copy of symbol b) and then inserts that copy

into the sequence. It is also a probabilistic context-free Lindenmayer system, represented by the

following:

a !

(
ab : 1� p

b : p
;
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b !

(
ba : 1� p

a : p
: (8)

Fig.3 illustrates the sequence generation process.

The statistical properties of the sequences generated by Eq.(4.8) is quite di�erent from those

generated by Eq.(4.4). First of all, when p = 0 and if the initial seed is a single symbol, Eq.(4.4)

generates a homogeneous sequence containing a string of the same symbols, whereas Eq.(4.8)

generates an \almost periodic" sequence called Thue-Morse sequence [Thue, 1906] [Morse, 1921]

[Cheng, et. al., 1988] [Cheng & Savit, 1990]. Secondly, related to the �rst di�erence, the largest

non-trivial eigenvalue of the transition matrix (largest in magnitude) for Eq.(4.8) is negative,

compared with the positive value for Eq.(4.4). It can be easily argued that this negative eigen-

value will introduce an oscillation term whose wavelength is varying with the distance. Thirdly,

in some sense, the order present in the Thue-Morse sequence is more easily destroyed by mutation

than that in the homogeneous sequence. The reason is that the order in the Thue-Morse sequence

is an almost periodic structure; and once the mutation is introduced, the distance between two

almost repeating segments shifts. Fig.4 shows the mutual information function for the sequences

generated by Eq.(4.8) at several parameters. Notice that some of the peaks in the mutual in-

formation function for the original Thue-Morse sequence (d = 6; 8; 12; 16; 20; 22; 24; 26; 34; 36; : : :)

remain when the mutation rate is p = 0:05 (i.e., d = 6; 8; 12; 16; 22; 24), but not the peaks at

longer distances (i.e., d = 26; 34; 36; : : :).

(3) The third model considers the case when the sequence replicates an imperfect copy of itself,

then ligates the copy sequence with the original one. The replication is direct (e.g., a copies

another a), and there is a probability for mutation. The rule is:

� � �a � � � !

(
� � � a � � �a : 1� p

� � � b � � � : p
;

� � � b � � � !

(
� � � b � � � b : 1� p

� � � a � � � : p:
: (9)

Fig.5 illustrates the sequence generation process.

This type of sequence manipulation rules can easily create long-range correlation, and the

range of the correlation becomes longer and longer as the sequence length becomes longer. This

feature makes the rule not �t to be described by Lindenmayer systems, either context-free or

context-sensitive, because the rule is highly non-local. The longest range of correlation is always

comparable with the sequence length. In fact, the sequence is not stationary by the standard

de�nition, and the concept of correlation function should only be used with care.
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Multiple copies of the same segment or the same gene in one single nucleic acid sequence is

quite common [Britten & Kohne, 1968, 1970] [Long & Dawid, 1980] [Jelinek & Schmid, 1982].

It is also suggested that oligomeric repeat could be an early mechanism for the nucleic acid

sequences to explore possible coding schemes [Oono, 1987]. Considering these facts, this type of

models needs more attention and theoretical investigations.

The sequence generated by Eq.(4.9) starting from a single seed is very boring, with almost

no structure. Instead, I will simulate a case when the starting segment is abb with length three.

The mutual information function of the limiting sequences is shown in Fig.6 with two di�erent

mutation rates. As mentioned above, there are correlations at lengths comparable to the sequence

length itself, whereas the maximum distance shown in Fig.6 is 100, so not all structures in the

sequence are shown in the �gure. From the plot (at the mutation rate p = 0:01), one can see that

the peaks supposedly at the multiples of three su�er a shift after d = 18. The subtle structure

in the sequence produced with zero mutation rate are quickly destroyed by the larger mutation

probabilities.

The lack of the scaling in the limiting sequence is due to the lack of the scaling in the equation

describing the updating of P��(d). Roughly speaking, the equation updating P��(d) is like

P��(d
0)t+1 = 2

X
d�d0

�(d)P��(d)
t +

X
d�N�d0

�(d)P��(d)
t; (10)

where �(d) is the largest non-trivial eigenvalue of the corresponding transition matrix. Note that

the order of the index on the joint probability is reversed into �� in the second summation. It is

not clear how to derive an approximate invariant solution from this equation.

(4) The last model is revised from the previous model by replacing the direct replication with the

complementary replication, i.e.,

� � � a � � � !

(
� � � a � � � b : 1� p

� � � b � � � : p;

� � � b � � � !

(
� � � b � � �a : 1� p

� � � a � � � : p;
(11)

illustrated in Fig.7.

Again, there is no interesting structure in the limiting sequence if the initial seed is a single

symbol. If we start from a segment abb with length three, the mutual information function for

the limiting sequences is shown in Fig.8. Without mutation, the mutual information function

of the limiting sequence reaches maximum at d = 2; 3; 6; 9; 12; 18; 24; 36; 48; : : :, whereas in Fig.8
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(for mutation rate p = 0:01), not only is there a tendency for the M(d) to decrease, but the local

peaks beyond d = 24 are also shifted.

5 Mutual information functions of several human nucleotide

sequences

As promised in the �rst section, I will present the result of mutual information function of nucleic

acid sequences. I would like to discuss two facts observed in human nucleotide sequences which

I analyzed: (1) intron (non-coding) segments tend to have longer correlation lengths than exon

(protein-coding) segments; (2) the correlation length for some intron sequences can be so long

that part of the power spectrum is close to a 1=f spectrum. The mutual information function

of other nucleic acid sequences, especially those of complete genomes, will be included in the

forthcoming paper [Li, in preparation].

There have been several correlation analysis for nucleotide sequences and amino acid se-

quences, using basically the autocorrelation function. Occasionally, power spectra are also used

for detecting periodicity in protein sequences [Liquori, et. al., 1986], and as an algorithm for

speeding up the calculation of autocorrelation functions [Felsenstein, et. al., 1982].

The autocorrelation function is de�ned only for numerical sequences. The question of how to

get a numerical series from the nucleic acid sequences has been handled in di�erent ways. There

are the following approaches: (1) using other physical quantities instead of the base sequence

[Trifonov & Sussman, 1980] [Kubota, et. al., 1981], assuming that these physical quantities

are closely related to the underlying primary sequence; (2) calculating the correlation of sites

with a particular property: if this property is present at a site, the numerical value on that

site is one, otherwise, the value is zero. So far, this is the most popular approach [Shepherd,

1981] [Fickett, 1982] [MaLachlax & Karn, 1983] [Arqu�est & Michel, 1987, 1990a, 1990b]; (3)

considering each of the 4 symbols as a vertex of the 3-simplex (i.e., the tetrahedron). Then a 4-

symbol sequence becomes a vector sequence with three component sequences. The autocorrelation

function or the power spectrum for the three component sequences can be calculated, and the

overall autocorrelation function or the power spectrum takes contributions from each component

sequence [Silverman & Linsker, 1986]. This idea is very neat, but has not been applied to nucleic

acid sequence analysis very often.

For sequences with only short-range correlations, Markov chain approximation should be good

enough, and one only needs to determine all the elements in the transition matrix. For sequences
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with median range correlations, Markov chains with higher orders can be applied, see [Tavar�e &

Giddings, 1989]. Nevertheless, if the correlation length is much longer as a result of tandem or

interspersed repeat, one has to calculate the correlation function up to very large distances. It is

this fact that the discussion presented in this section could be useful for the nucleic acid sequence

analysis.

To start the calculation, I take �ve exon segments and �ve intron segments from human DNA

sequences. All the data are from GenBank [Burks, et. al., 1989]. I choose these sequences because

they have relatively longer sequence lengths, which makes the calculation of the joint probability

as well as the mutual information more reliable. The �ve exon sequences are:

� Human coagulation factor VIII:C (anti-hemophilic factor) mRNA

(name: HUMFVIII, length: 7056);

� Human alpha-2-macroglobulin mRNA

(name: HUMA2M, length: 4425);

� Human ceruloplasmin (ferroxidase) mRNA

(name: HUMCERP, length: 3198);

� Human 90-kDa heat-shock protein gene

(name: HUMHSP90, length: 2175);

� Human factor I (C3b/C4b inactivator) mRNA

(name: HUMFISP, length: 1752).

The unit of length is the nucleotide base (or base-pair due to the double-strand structure of DNA

molecules). The �ve intron sequences are:

� Human serum albumin gene

(name: HUMALBGC, length: 16349);

� Human proopiomelanocortin (POMC) gene

(name: HUMPOMC, length: 6594);

� Human blood coagulation factor VII gene

(name: HUMCFVII, length: 5640);

� Human haptoglobin gene (alpha-2 allele)

(name: HUMHPARS1, length: 5017);
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� Human alpha-tubulin gene (b-alpha-1)

(name: HUMTUBAG, length: 1980).

Fig.9 (a){(e) show the mutual information functions of all �ve exon sequences. Due to the

�nite statistics, even two uncorrelated variables can have a non-zero residue mutual information

[Li, 1990]. In order to subtract the �nite size e�ect, I include the mutual information function for

the corresponding random sequences in these plots (two for each). By \corresponding", I mean

that the sequence has the same sequence length and the same composition of the four symbols:

A (Adenine), C (Cytosine), G (Guanine), and T (Thymine).

The crossing region between the two mutual information functions, one for the original nucleic

acid sequence and another for the corresponding random sequence, gives the distance at which

the correlation becomes negligible. In other words, it is a good estimation of the correlation

length. Roughly speaking, the correlation lengths for the �ve exon sequences are of the order of

10 or less, except one sequence HUMHSP90 whose correlation length seems to be much longer.

Curiously, for this sequence, the two mutual information functions cross at around d � 5, but

then they are separated again at longer distances.

Fig.10 (a){(e) show the mutual information functions of all �ve intron sequences, as well as

those of the corresponding random sequences. The correlation lengths seem to be around 20 or

more, except one sequence HUMCFVII whose correlation length is substantially longer. In order

to see how long the correlation length is, I plot the mutual information function of the sequence

HUMCFVII again in Fig.11(a) up to much longer distances. The two M(d)'s intersect around

d � 600� 1000 (the sequence length itself is 5640).

Note that Fig.9 and 10 con�rm the previous �ndings that correlation in nucleic acid sequences

oscillates [Shepherd, 1981] [Fickett, 1982], and the periodicity of the oscillation tends to be three

for exon sequences and two for intron sequences [Arqu�est, 1987, 1990a, 1990b] (see, in particular,

the exon sequence HUMHSP90 and the intron sequence HUMALBGC). In addition to these

known results, our mutual information functions show a new feature which has not been discussed

before, that intron sequences tend to have more slowly decaying mutual information functions

than exons, or intron sequences tend to have longer correlation lengths.

It is not clear of whether this observation holds for other exon or intron sequences, and whether

it can be turned into some practical tool for distinguishing introns and exons. Identifying protein-

coding regions in DNA sequences is a classical problem in nucleic acid sequence analysis (see, for

example, [Stormo, 1987, 1990]). It is known that intron and exon sequences do have di�erent

statistical properties, and it will be interesting to establish that the correlation length is one of
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them.

In some hand-waving arguments, one could understand why the exon sequences tend to have

correlation length around 10. Exon sequences consist of codons, which can be considered as

\words" in the \sentence" which is the exon sequence itself. Typically, there is a distinct structure

within a codon and not all possible three-base con�gurations appear in the sequence with equal

probability. The structure of codons and their uneven distribution impose a strong correlation at

short distances. On the other hand, the correlation between codons is weak, and Markov chains

are in fact good approximation for codon sequences. As a result, the correlation length is at most

a few codon lengths, i.e., a few multiples of three. A value of 10 for the correlation length is

consistent with this picture.

In fact, the mutual information function for the letter sequences (alphabets as well as punctu-

ations, and blank spaces) or letter-type sequences (with a smaller number of symbols, including

only vowel, consonant, punctuation and blank space) of the English texts exhibit the similar

behavior. Fig.12 shows the mutual information function of the JFK's speech (the text is taken

from [Graham, 1970], with the sequence length equal to 7391). The correlation length is around

10 | also a few multiples of the average length of English words. More results of the mutual

information function of letter sequences in English is in [Li, 1989b].

Estimating the correlation length of introns seems to be more di�cult. One understand-

ing of the long-range correlation in intron sequences is perhaps that there exist highly repeated

segments.1 If this is true, the value of the correlation length should depend on how frequent this

repetition occurs, how long the repeated segment is, and how far apart the repeated segments

are. Another understanding of the long-range correlation in introns might be that the secondary

structures of RNA molecules require certain correlation in the primary sequence. Similar discus-

sion on the e�ects of the secondary structure of RNA sequences on the formal language grammar

that describes the sequence can be found in [Searls, 1990]. It should be interesting to understand

the intron/exon di�erence, including the di�erence of the correlation length, from the evolution-

ary point of view. It will bring us closer to the theme discussed throughout this paper, that the

statistical properties of the sequences should be strongly related to the dynamics which generate

them.

1I thank C. Burks for discussions on this point.
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6 Partial 1=f spectrum in the nucleic acid sequence HUM-

CFVII

The persistence of large correlation values at longer distances indicates there are structures with

length scales comparable to the sequence length itself, and it causes an increase of the power

spectrum at lower frequencies. One case of this situation is the 1=f noise, or sequences whose

power spectra are P (f) � 1=f�, with � � 1.

The extremely slow decay of the mutual information function in intron sequence HUMCFVII

�ts the above description. The sequence HUMCFVII is composed of four intron segments, from

position 586{1653, 1720{4293, 4455{6382, and 6408{6477. Both the location of four segments

of HUMCFVII and the actual sequence are shown in Fig.13. Because the sequence is almost

all introns, the deletion of a small fraction of the exons is not expected to e�ect our conclusion.

From Fig.13, it can be seen that the second segment contains a highly repetitive structure, with

the periodicity equal to 17. Indeed, there are peaks in the mutual information function (see

Fig.11(a)) at the multiples of 17. Besides this repetition, there seem to be other repetitions in

the sequence as well.

To check that this period of 17 repetitions are not the only source of the long-range correlation,

Fig.11(b) shows the mutual information function of the same sequence with the period of 17

segments being deleted (the sequence length is now 4808 as compared with the original length of

5640). Although all peaks at multiples of 17 disappear, the correlation length is still as high as

500.

In order to calculate the power spectrum, I convert the 4-symbol sequence to 2-symbol se-

quences either by grouping A and G (both of them are purines, R), T and C (both of them are

pyrimidines, Y); or, by grouping T and A (they are complementary to each other), C and G

(they are also complementary to each other). The power spectra (in log-log scale) for the two

converted binary sequences are shown in Fig.14 and Fig.15 respectively with the sequence length

being cut at 212 = 4096 (1544 bases are deleted from the 5640 bases, including the complete

fourth segment and part of the third segment). For the program of calculating power spectrum,

see, for example, Chapter 12 of [Press et. al., 1988]).

The two spectra are very similar, but the �tting of lower frequency components of the spectrum

gives P (f) � 1=f0:93 for the �rst plot, and P (f) � 1=f0:76 for the second plot. The high

frequency spectral components are basically 
at. The peaks correspond to the period 17 patterns

(log10(f) = log10(4096=17) = 2:38). The separation between the low frequency 1=f� spectrum
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and the high frequency white spectrum is arbitrary, and has been chosen by a personal judgement.

The scaling of the 1=f spectrum spans 1.5 decades, out of a total 3.3 decades (log10(4096=2) =

3:31). To emphasize that this 1=f spectrum can only characterize a small portion of the spectrum,

I call it partial 1=f spectrum.

A question raised is how widespread partial 1=f spectra like this are in nucleic acid sequences?

We have already excluded all protein-coding sequences, because their correlation length is typ-

ically very short. Besides intron segments, \junk genes" | the segments in between two genes

| are also potential candidates for sequences with long-range correlation. Unfortunately (per-

haps fortunately for biologists?), there have been so far no junk genes sequences available in the

GenBank.

7 Discussions and conclusions

The models described in section 4 have several simplistic aspects which make them hardly realis-

tic for the evolution of nucleic acid sequences. These rules act at a very low level. They are more

like models for physical systems instead of biological systems. In contemporary biological organ-

isms, the change of nucleic acid sequences is under high-level control and regulation, driven by

evolutionary pressures, and involves other macromolecules. There have been attempts to increase

the degree of complexity of the sequence manipulation rules; see, for example, an approach called

typogenetics [Hofstadter, 1979] [Morris, 1988, 1989]. In typogenetics, the sequence is examined

by a moving head. The moving head imposes operations such as cutting the sequence or insert-

ing new symbols by looking at the local symbol con�gurations and consulting a high-level code.

When the moving head �nally stops, a new sequence, or a new set of sequences, is produced.

The moving head approach is reminiscent of the Turing machine [Hopcroft & Ullman, 1979]. It

is not known in typogenetics what the connection is between the high-level code (as well as the

initial sequence) and the statistical features of the �nal sequence(s).

In typogenetics, one has to provide a high-level code, which is presumably based on the

knowledge of chemistry. Identifying the high-level code directly from chemistry can be very

di�cult in contemporary biological systems. Nevertheless, it might be relatively easier for a

prebiotic environment since the high-level instructions were rare. Even if some high-level rules

exist, they resulted in simple terms from the low-level interaction of a population of sequences.

There are several attempts to study this \reaction networks", one example is the hypercycle

[Eigen, 1971] [Eigen & Schuster, 1979] [Eigen et. al., 1988], and another is the autocatalytic

networks [Kau�man, 1986] [Farmer et. al., 1986] [Bagley, 1991]. Again, the statistical properties
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of a population of sequences are not the focal point of these studies (see, however, a recent study

mentioned in [Kau�man, 1990]).

Even with a single-sequence, �xed-dynamics-rule models, there are many variations beyond

the scope of this paper which are potentially relevant to the evolution of nucleic acid sequences.

In particular, the addtion of insertions and deletions to our models should be desirable. Shep-

herd has studied the e�ects of introducing insertion to the periodic sequences [Shepherd, 1981].

By examining simple examples (for example, the sequence : : : abababab : : : before insertion, and

: : : ababbabab : : : after), it can be shown that the correlation function of periodic sequences with

defects decays linearly. In other words, the e�ect of the mismatch propagates linearly. On the

other hand, if the original sequence is random, the insertions will have very little e�ect.

In conclusion, this paper discusses the long-range correlations generated by local replication

followed by an insertion (elongation) or sequence replication followed by a ligation. The existence

or the absence of the long-range correlation is used to infer, to some extents, the dynamical process

which produces the sequence. Indeed, it is observed in this paper that protein-coding (exons) and

non-coding (intron) segments have di�erent correlation lengths | those in introns are typically

longer than those in exons. Although there is still a long way to go before we can comprehend

all the statistical features of contemporary nucleic acid sequences from the evolution process |

like what has been partially achieved in cosmology on explaining the statistical features of the

galaxy distribution | it is hoped that this paper will stimulate more interest and studies on this

subject.

Note Added in Press

Two highly relevant papers have been published since the completion of this paper. The �rst

one [Li & Kaneko, 1992] carries out a symbolic spectral analysis of the sequence HUMCFVII and

suggests a parallel between the repetitive segments in intron sequences and those in music notes.

The second one [Peng, et. al., 1992] converts purine-pyrimidine binary sequences into random

walks, and these \DNA walks" are graphically displayed. The main conclusion of the current

paper that intron sequences have longer correlation lengths than exon sequences is con�rmed in

[Peng, et. al., 1992].
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Figure 1: Illustration of the sequence manipulation rule (4.4), in which a symbol can either be

elongated to two same symbols (solid arrows) or mutate to a di�erent symbol (shaded arrows).

Figure 2: Mutual information function M(d) of sequences generated by rule (4.4) at mutation

probabilities p = 0:0492 � 0:05 and p = 0:299 � 0:3. The initial condition is a single symbol a,

and the sequence length N = 100; 000.

Figure 3: Illustration of the sequence manipulation rule (4.8), in which a symbol can either

be elongated to one same symbol followed by a di�erent symbol (solid arrows), or mutate to a

di�erent symbol (shaded arrows).

Figure 4: Mutual information function M(d) of sequences generated by rule (4.8) at mutation

probabilities p = 0:0496 � 0:05 and p = 0:298 � 0:3. The initial condition is a single symbol a,

and the sequence length N = 100; 000.

Figure 5: Illustration of the sequence manipulation rule (4.9), in which a symbol either makes

an extra copy of the same symbol (solid arrows), or does not copy but mutates itself (shaded

arrows), then the copied sequence is ligated to the original sequence (encircled by the rectangle).

Figure 6: Mutual information function M(d) of sequences generated by rule (4.9) at mutation

probabilities p = 0:00993 � 0:01 and p = 0:0493 � 0:05. The initial condition is a symbol string

abb, and the sequence length N = 100; 000.

Figure 7: Illustration of the sequence manipulation rule (4.11), in which a symbol can either

make an extra copy of a symbol di�erent from itself (solid arrows), or do not copy but mutate

itself (shaded arrows), then the copied sequence is ligated to the original sequence (encircled by

the rectangle).

Figure 8: Mutual information function M(d) of sequences generated by rule (4.11) at mutation

probabilities p = 0:0101 � 0:01 and p = 0:0496 � 0:05. The initial condition is a symbol string

abb, and the sequence length N = 100; 000.
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Figure 9: Mutual information function M(d) of �ve exon sequences from human genome. The

sequences are (a) HUMFVIII, with length N = 7056; (b) HUMA2M, N = 4425; (c) HUMCERP,

N = 3198; (d) HUMHSP90, N = 2175; and (e) HUMFISP, N = 1752. The mutual information

functions of two corresponding random sequences are also included for each case. The correlation

length can be estimated by the distance at which M(d) of the exon sequence intersects with the

M(d) of the random sequences.

Figure 10: Mutual information function M(d) of �ve intron sequences from human genome.

The sequences are (a) HUMALBGC, with length N = 16349; (b) HUMPOMC, N = 6594; (c)

HUMCFVII, N = 5640; (d) HUMHPARS1, N = 5017; and (e) HUMTUBAG, N = 1980. The

mutual information functions of two corresponding random sequences are also included for each

case. The correlation length can be estimated by the distance at which M(d) of the intron

sequence intersects with the M(d) of the random sequences.

Figure 11: The mutual information function M(d) of (a) the intron sequence HUMCFVII (up to

distance d = 1000, as compared with the maximum distance d = 100 in Fig.10(c)). Also shown

is M(d) of a corresponding random sequence; (b) the same HUMCFVII intron sequence with the

period of 17 segments (832 bases) being deleted.

Figure 12: M(d) of the letter-type sequence derived from the letter sequence of the JFK's in-

augural speech. The four letter types are vowel, consonant, punctuation and blank space. The

sequence length is N = 7391. Also shown is the M(d) of a corresponding random sequence.

Figure 13: The location of the four intron segments of HUMCFVII and the sequence itself.

Figure 14: The power spectrum P (f) of a binary sequence derived from the intron sequence

HUMCFVII. The �rst symbol includes nucleotides A and G (purines), and the second symbol

includes T and C (pyrimidines). The number of bases included in the calculation is 212 = 4096

out of total 5640 bases. Half of the Fourier components are redundant, and only the �rst half of

the spectrum is plotted (the maximum value on x-axis is log10(4096=2) = 3:31). Four neighboring

spectrum components are averaged into one value (which leaves 29 = 512 points on the plot).

The best-�t line for the �rst 20 points using the power law function P (f) � 1=f� gives � � 0:93.
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Figure 15: The power spectrum P (f) of a binary sequence derived from the intron sequence

HUMCFVII. The �rst symbol includes nucleotides T and A, and the second symbol includes C

and G (see Fig.14 for a comparison). The best-�t line for the �rst 20 points (out of 512 spectrum

components) using the power law function P (f) � 1=f� gives � � 0:76.


