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Adhesion-induced phase separation of multiple species of membrane junctions
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A theory is presented for the intermembrane junction separation induced by the adhesion between two
biomimetic membranes that contain two different types of anchored intermembrane juricticeystor-ligand
complexes The analysis shows that several mechanisms contribute to the phase separation of the membrane
junctions. These mechanisms include the followifig.The elasticity of the membranes mediates a short-
ranged nonlocal interaction between the junctions due to the height difference between type-1 and type-2
junctions. This is the main factor that drives the phase separdtipilVhen type-1 and type-2 junctions have
different flexibilities against stretch and compression, the “softer” junctions are the “favored” species, and
aggregation of the softer junctions can ocdiir) The thermally activated shape fluctuations of the membranes
also contribute to the phase separation by inducing another nonlocal interaction between the junctions and
renormalizing the binding energy of the junctions. The combined effect of these mechanisms is that when
phase separation occurs, the system separates into two domains with different relative and total junction
densities.
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[. INTRODUCTION [12-14. Since a complete understanding of the physical
mechanism behind this type of adhesion-induced phase sepa-
Adhesion of membranes is responsible for cell adhesiomation of multispecies membrane junctions is still unavail-
which plays an important role in embryological develop-able, in the present work | develop a theoretical model to
ment, immune response, and the pathology of turfibfsin study the equilibrium properties of such systems.
many cases, membrane adhesion in biological systems is me- This paper is organized as follows. In Sec. Il, | discuss a
diated by the specific attractive interactions between complezoarse grained model for the adhesion of two membranes
mentary pairs of ligands and receptors which are anchored idue to the formation of two types of junctions. To concen-
the membranef2]. At the same time, the adhesion betweentrate on the effect of the differences between type-1 and
multicomponent biomembranes or biomimetic membranes itype-2 junctions, the glycocalyx and the generic interactions
also intimately related to domain formatig8—11]. When  between the membranes are not considered in this model.
the membrane adhesion is mediated by the specific lock-andrurthermore, | assume that the membranes are bound to each
key type of bonds between the anchored ligands and recepther due to the formation of the membrane junctions. Hence
tors, i.e., intermembrane junctiof®r simplicity, from now | will not discuss another interesting problem of the unbind-
on | shall use the ternunctionsfor these ligand-receptor ing transition. An approximate solution of this model which
complexeg adhesion-induced lateral phase separations haveeglects the fluctuations of membrane-membrane distance
been observed in many experiments in biomimetic system&he “hard membrane” solutionis studied in Sec. Ill. This
[3-5]. Theoretical models and Monte Carlo simulationssimplified solution already reveals several mechanisms that
[6—11] have also shown similar phase separation behavior iare important to the phase behavior of the system. For ex-
various systems. ample, when type-1 and type-2 junctions have the same flex-
So far, studies on adhesion-induced lateral phase separibility but with sufficiently large height difference, mem-
tion have focused on the case when the system has a sinddeane adhesion induces a phase separation that is driven by
type of junction. The presence of the glycol proteins an-the height difference of the junctions. In this situation the
chored in the membrandse., repellery and the interplay membranes separate into a type-1-junction-rich domain and a
between generic interactiofi®r example, van der Waals, or type-2-junction-rich domain. On the other hand, when the
electrostatic interactionsand specific ligand-receptor inter- junctions havdifferent flexibilitiesandthe height difference
actions are believed to enhance this phase separation. Hovg not very large membrane adhesion can induce an aggre-
ever, in biological systems membrane adhesion is often megation of the “softer” junctions, i.e., the membranes separate
diated by more than one type of junction, and the adhesioninto two domains, both of which are rich in softer junctions.
induced phase separation of the membrane junctions iShe general situation is that both mechanisms contribute to
believed to play an important role in some biological pro-the adhesion-induced phase separation. When phase separa-
cesses. For example, a key event governing a mature intion occurs, the system separates into two domains with dif-
mune response wheh lymphocytes interact with antigen- ferent membrane-membrane distances because of the height
present cells is the formation of immunological synapses. Aimismatch of the junctions, and thetal numberof softer
immunological synapse is a patch of membrane adhesiojunctions in the system is greater than tietal numberof
region between & cell and an antigen-present cell, where stiffer junctions due to the effect of softer junction aggrega-
the TCR—MHC-peptide complexes aggregate in the centetion.
with a LFA-1-ICAM-1 complex rich region surrounds it The fact that the hard membrane solution assumes that the
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membrane-membrane distance is a constant has neglecte
some interesting physics of the system. For example, an in-
teresting feature of the hard membrane solution is that when z
phase separation occurs, the total junction density, ¢¢.,
+ ¢, (¢, is the density of typer junctions, is the same in \ PV
domains that have different values ob{(— ¢,)/(d1+ @) '
(the relative densities of the junctiondHowever, when the
effects of nonconstant membrane-membrane distance, and
the thermally activated fluctuations of the membranes are
discussed in Sec. IV, this “interesting result” no longer
holds. The fluctuation analysis in Sec. IV shows that, first, ? ' (1\ ’_é_‘
the thermally activated membrane fluctuations renormalize
the chemical potentials of the junctions, and effectively re- ligands receptors
duce the binding energies of the junctions. This chemical
potential renormalization is less significant for the softer FIG. 1. Schematic representation of the system. The membrane
junctions because they allow the membranes more freedofeights arez,(r) andz,(r) from the reference plane. There are two
to move. Second, the fluctuation analysis also reveals nonldypes of receptors in one membrane and two types of ligands in
cal interactions between the junctions, which are mediate@nother membrane. Two types of junctions can be formed from the
by the membrane elasticity and thermally activated fluctualigands and receptors. They have different natural lengthand
tions of the junction densities and membrane-membrane didl2- In general, different types of junctions also have different flex-
tance. These interactions are not included in the simpkilbilities. The softer junctions can be easily stretched or compressed
physical picture provided by the hard membrane solution. Adrom their natural length.
a result of these effects, when phase separation occurs, d
mains with different values of &, — ¢,)/(p1+ @) also ) : .
have different values otp;+ ¢,. The fluctuation analysis —2y(r) is the membrane-membrane dlst_ance.aThe first .
also shows that, when the hard membrane solution of th8nd second terms on the right hand side are the bending
junction densities is small, or when the junctions are veryelastic energy and surface tension of the membragres.
short or very soft, the membrane fluctuations are sufficientiyelated to the bending moduli of the membranes by
large such that the present analysis cannot provide the con® k1k2/(k1+ k2) [15], and y is related to the surface ten-
plete physical picture for the system. This criterion showssion of the membranes by=y,y,/(y1+ ;) [15]. In this
under what conditions one needs a numerical simulation o$imple model it is assumed thatand y are independent of
the model to provide a better picture of the physics in thisthe densities of the receptors and ligands anchored in the
system. Section V summarizes this work. The Appendix dismembranes. | also assume that in the presence of adype-
cusses the details of the fluctuation analysis around the hajdnction, the interaction energy between the membranes ac-
membrane solution. quires a minimum ah=h,, (the natural height of a typa-
junction), and the coupling temEf,:l()\a/Z)%(r)[h(r)
—h,]? comes from the Taylor expansion around this mini-

To focus on the physics of adhesion-induced phase sep#um. Hereh , is the flexibility of a typee junction against
ration, | will not discuss the binding-unbinding transition but stretch or compression. The last term on the right hand side
only consider the case when the membranes are bound i® the binding energy between the receptors and the ligands.
each other due to the presence of the junctions. The systemT® focus on the effect of adhesion-induced interactions, |
shown schematically in Fig. 1. The heights of the membranebave neglected all the direct interactions between the junc-
measured from the reference plafie., thex-y plang are  tions, receptors, and ligands. The nonspecific interactions be-
denoted ag,(r) andz,(r), respectively, where=(x,y) isa tween the membranes are also neglected. For simplicity,
two-dimensional planar vector. There are two types of anfrom now on | further choose the unit length in tke/ plane
chored receptors in membrane 1, and two types of anchore® be \a, wherea is the in-plane size of an inclusion, and the
ligands in membrane 2. Type+eceptors & is 1 or 2) form  unit length in thez direction is chosen to bga/x=I,. Thus
specific lock-and-key complexes with typetigands; these the Hamiltonian of the system can be expressed in the non-
are the junctions that mediate the membrane adhesion. Thimensional form,
density of typee junctions atr is ¢,(r), and the densities of 5
free typee receptors and ligands atare denoted byg,(r) I , I 2 A,
and ¢ ,(r), respectively. The binding energy of a type- H:f dr E[V h(r] +§[Vh(r)] +;1 7%“)
junction is denoted b¥g, .

The effective Hamiltonian of the system can be written as

xy—plane

The energy unit is chosen to HesT. Here h(r)=2z,(r)

Il. THE MODEL

2
, X[ —hal?= X $uFaal, )
K 4 N “
H=Jd2r—V2hr2+—Vhr2+ — (1
[2[ ("] 2[ (n] ;1 2 ¢ S where I'=14l3 is the dimensionless surface tensioh,
=\,l3 is the dimensionless junction flexibility, and all in-

2
x[h(r)—h,]?— E b.Eg, ! (1) plane Igngths and heights are scaledJay and \a/x=l,,
a=1 respectively.
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The effective interaction free energy between the junc- Asdp.+A_¢_
. . . . . . _ 2 ¥+ 2 2
tions due to the membrane-junction coupling is obtained by Fc_f d 5 (Im+ A7)
integrating overh(r),

+(A—¢++A+¢—)|MAh_(E+¢++E—d’—) ’
Fol éo]==1In f D[h]e N4l |. 3
tS)
Thus, in the spirit of density functional theory, the total freewhereE . =Eg; + Eg,. It is clear that there is an interaction
energy of the system is provided by between the junctions due to the membrane adhesion. To
minimize the total free energy under the constraints in Eq.
F=F.+Fq, (4) (6), it is convenient to work in the grand canonical ensemble
and define the free enerdy of the system under constant
where chemical potentials,
2 _ 2
G=F +F— 2 MRJ Ar (Bt )
Fom 2 | drLaba(n)(In o= 1)+ ipy(r)(IN = 1) T
_E d2
+ lpLa(r)(In lr//La_ l)] (5) /‘LLaf r(¢a+ (//La)- (9)

is the contribution from the entropy of the junctions, recep-The chemical potentialgsg, , u., are determined by fixing
tors, and ligands. Here | have assumed thhgt<l, r, the total number of receptors and ligands in the system.
<1, and ¢ ,<1. In principle, onceF. is calculated, the However, for convenience | will proceed the discussion in
equilibrium distribution of the junction density is determined the grand canonical ensemble. After some straightforward
by minimizing the total free energy of the system under thealgebra,G is expressed as

constraint that the total numbers of the receptors and ligands

in the system are fixed, i.e., G:f d2r b {9(@)+2(nd, —1)—pu,}+G,, (10
f dr{o(r) + ra(1)}=Nra where
(6) (A +¢)?

a(9)=- a0 T HF AN+ )

fdzr{¢a(r)+wLa(r)}:NLa! +(1_¢)|n(1_¢)_/.l/ ¢

hereNg, andN, , are the total numbers of type+eceptors =f(¢)—n-¢, (11
and ligands in each membrane when the membrane are com_ /A b= /q’> and e = (upt poy) * (o
+ 4 + R1 L1) = (MR2

pletely detached. +,u,|_2)+EBl Egy— (AhIZ)Ai . G, includes terms that
only depend onyg, and ¢, ,, they are decoupled from the
1. “HARD MEMBRANE” SOLUTION other terms, hence from now on | neglég,. From Eq.
(10), it is clear that in the hard membrane solution the phase

Since the integral in Eq.3) cannot be carried out exactly, behavior of the junctions is governed Wﬁ/h . and

in this section | discuss an approximate solution in whigh 4. . Minimizing g(4) leads to the equilibrium value ap,

andh(r) are independent af !n this approxmatlonFlc €an  and later | will show that there can be a phase separation in
be easily calculated by looking for the saddle point in the . On the other handg. is determined bysG/8¢. =0
integrand. This is equivalent to neglecting the fluctuations ofz, Eq.(10), ¢. can be expressed by M

the membrane-membrane distance, therefore | call this mean-
field approximate solution the “hard membrane” solution. To do=exdin,—3g9(d)]. (12
simplify the notation, | defineA.=A1=A,, ¢.=(d1

+¢,)/2, and leth;=hy— A}, hz—ho+Ah Thus the hard Because in equilibrium¢ is determined by minimizing
membrane solution of the membrane-membrane distance c&f¢), 9(¢#) takes a single value even when there is a phase

be expressed by separation in¢g. Therefore in the hard membrane solution
¢ is single valued even when the system separates into two
A d+A,d_ domains with different values af. This is a natural result of
h=hy— ———————A=hy—Iy. (7) the approximation in the hard membrane solution in which
e all spatial correlations are neglected Since in this approxi-

mation the “spreading pressure” of the two-dimensional gas
Notice thatl depends on the junction densities. After sub-of junctions is the same as an ideal §ja§], the equilibrium
stituting h back to the Hamiltonian, the effective interaction condition requires that total junction density the same in both
free energy between the junctiorts,, can be expressed by phases. In the following section | will show that, when the
its saddle-point value effects of fluctuations around the hard membrane solution are
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FIG. 2. The shape of(¢) with different values ofu_ when

A=0.2, andAZA , =1.998. Solid line,u=—0.404; dashed line,

w=—0.4045; dash-dotted ling,= ;0'405' Phase coexistence oc- g1 3. g(4) in the phase coexistence for different values.of
curs atu~ —0.4045 even though 2A . <2.0. with AZA , =2.04. Solid line\=0; dashed line\ =0.025; dash-

) ) o dotted line,A=0.05. A=0 curve is symmetric aroun¢p=0, \
taken into account, the analysis reveals a renormalization of o curves shows that the positions of the minima are shifted to-

the binding energy of the junctions arfdonloca) interac-  wards smallerg values, i.e., softer junctions are the favored spe-
tions between the junctions which are mediated by the menyies.

brane elasticities and thermally activated membrane fluctua-
tions. As a result, these spatial correlations modify the
spreading pressure of the junctions such that it is not th
same as the simple ideal-gas relation, and the true equilib-
rium solution of¢ . is not single valued in the regime where
phase separation happens. Thus, the fact ¢ghatis single
valued in the hard membrane solution is an artifact of th
approximation that assumes constant junction densities an
membrane-membrane distance.

Now | discuss the hard membrane solution¢gof To em-
phasize different roles played b&(ﬁ/h and\, | begin the
discussion with the special case whes 0, i.e., when both
types of junctions have the same flexibility. In this case th
important parameter of the theoryztsﬁAJr, andg(¢) has a
very simple form

$»<0 means that the softer junctions tend to aggregate,
hen phase coexistence occurs, a domain with high

¢4 coexists with a domain with smalp,— ¢,. For the
choice of parameters in Fig. 2, the density of type-2 junc-
tions is higher than the density of type-1 junctions in both
dpmains.

Another effect of nonzera can be seen in Fig. 3, where
g(¢) for different values of\ is shown atAﬁA+=2.04
>2. It shows thag(¢) is symmetric ingg when\=0 but
asymmetric in¢ for nonzero\, i.e., the symmetry undep
— — ¢ no longer exists when the junctions have different

Slexibilities. Comparing ton=0 case, in the case when

>0, the minima ofg(¢) are shifted towards smalles val-

ues, i.e., the softer junctions are easier to be formed. Notice

that different from the example in Fig. 2, in Fig. 3 when

phase coexistence occurs the membranes separate into

¢,-rich and¢,-rich domains, but the softer junctiofis this

case type-2 junctionsare the “favored” species, i.e., the
- (13 {otal number of the softer junctions in the system is greater

) ) . than the total number of the stiffer junctions. From these two

This form is exactly the same as the Flory-Huggins theoryaxamples of nonzern, | conclude that in general the experi-
for blnarzy mixtures[17], where phase separation occurs mentally observed junction separation induced by membrane
when ApA,>2 and the phase coexistence curve is aadhesion is actually a result of the combined effect of the
straight line atu_=0. This phase coexistence curve ends ataggregation of softer junctions and the separation of the
a critical pointu_=0, APA . =2. The physics in this spe- junctions due to the mismatch of junction heights.

cial casen=0 is clear: the difference in junction height In the neighborhood QMA+:2, A=0, the equilibrium
drives a phase separation, and this separation only occuiglue of ¢ is small compared to unity, therefore the phase
when the factorAfA ,, a combination of junction height diagram of the system in this regime can be studied by ex-
difference and junction flexibility, is sufficiently large. On pandingg(¢) around¢=0,

the phase coexistence curve, the system separates into

¢-rich and ¢,-rich domains, and the system is symmetric

2
A

9()=-— $*+(1+ ¢)In(1+ $)+ (1 ¢)In(1— )

underp— — . 9(B)=T2¢7+15¢°+ 144"~ u_ ¢+ const+ O(¢°),
Next | discuss the more general casé0, i.e., the junc- (14

tions have different flexibilities. Figure 2 shows the shape of

g(¢) with different values ofu_ when\x=0.2 andAﬁA+ A2

=1.998. Notice that this is the case WhérﬁA+<2, ie., r,=1— ThA+(1_)\2)2’

there is no phase separationNf=0. Nevertheless, Fig. 2
clearly shows thagj(¢) has two local minima, both at nega-
tive ¢, and phase coexistence occurs when~ —0.4045.
Since this is the case wher>0, i.e., type-2 junctions are
“softer” than type-1 junctions, double minimum at= ¢,

AZ
r3=5 A A(1-N2)2,
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FIG. 4. Schematic representation of the phase coexisten
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tion distribution. It is only when the flexibilities of both types

of junctions are the same that the difference in the junction
height is the most important factor in the phase separation. If
the system consists of junctions with different flexibilities,
the softer junctions are more favored, and the phase separa-
tion is a result of the interplay between the aggregation of the
softer junctions and the separation of the junctions due to the
height difference. Therefore, the smallest vaIueA&ﬁA+
above which phase separation can occur is smaller for sys-
tems with larger|\|. However, the approximations in the
hard membrane solution neglect the spatial correlations in
the system, this lead to the result thiat is the same in both
domains when phase separation occurs. The analysis, which
includes the elasticity of the membranes and the thermal

Cféuctuations around the hard membrane solution, in the fol-

lowing section will show that the membrane elasticity and
thermally activated fluctuations modify the hard membrane

lines. \;>\,>0. The thin dashed curve is the position of the endSolution, and the true value @, is not the same in both

points of the phase coexistence curves; this is givenAkiy&+
~2(1-9\%/4), m_~—2\. The curves move towards the=0

phases when phase separation occurs. Thus, thermal fluctua-
tions have to be considered in order to gain the full under-

phase boundary a4 2A , increases because the effect of junction standing of the nature of the membrane-adhesion-induced

height mismatch becomes more important.

2

1 h
r4=€—71\+)\2(1—)\2)2, (15)
~ A ,
p-=p-t S AN (2705,
AZ
const= ThAg\Z,

and O(¢°) is the contribution from terms of ordet® and
higher. The phase diagram in the neighborhoodﬂﬁfAJr

interactions between the junctions.

IV. BEYOND “HARD MEMBRANE” SOLUTION

As mentioned in the preceding section, the hard mem-
brane solution neglects the effects of nonuniform membrane-
membrane distance and junction densities, and therefore fails
to take the effects of membrane-mediated nonlocal interac-
tions between the junctions into account. This is reflected in
the fact that the hard membrane solution predicts a single
valued ¢, in both domains when phase coexistence occurs.
To study these membrane-mediated effects, in this section |
include the fluctuations of membrane-membrane distance
and junction densities by expanding the free energy of the

=2, A=0 is plotted schematically in Fig. 4, where the phaseSystem around the hard membrane solution. In the following

coexistence curve fox=0 ends at a critical poinf\2A

| denote the true membrane-membrane distance as

=2, n_=0, and the end points of the phase coexistence

curves forA#0 occur at the triple root ofdg/d¢=0.

Straightforward calculation leads to the position of the end

points of the phase coexistence curves at

AZA ,=2(1—9N\%4)+O(\%),
(16)
w_=—2N+0(\%).

This shows how the smallest value Af2A , above which
phase separation can occur decreases as the difference

h(r)=ho+1y+ 8l (r)=hy+ 8l (r), (17)

and the densities of the junctions are expressed by
¢a: d)aM + 5¢(r)

Here 61, ¢, are the deviations of the true valuestoéind
¢, from their hard membrane solutions,,, andh,, are the
hard membrane solution a@f,(r) andh(r), respectively. In
tB'IS expansion, the coarse-grained Hamiltonian can be ex-

(18

junction flexibilities increases. The phase coexistence Curvegressed as

move towards the\=0 phase boundary as the value of
(AZ/2)A . increases. This is because ad?2(2)A. in-

H=Hy+Ho+H;+H,, (19

creases, the effect of junction height mismatch becomeﬁ/hereHM is H(hy , dunt s bont)

more important, and the difference in the junction flexibili-
ties becomes less important.

Although the hard membrane solution is a very simplified Hg=
analysis of the model, it nevertheless, reveals interesting
physics of the phase separation due to membrane adhesion.
First of all, the height difference between different types of
junctions is not the only factor that is important for the junc-includes terms that are bilinear #5i and 6¢,,,

fd2r{%(V25I)2+%F(V(SI)2+[IM(A15¢1+A25¢2)

+ Ap(A18h1—Ay0¢,) 161} (20
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FIG. 5. Membrane-mediated interaction revealed by the Gaus%ivhereG(x) is a MeijerG function[18]. G(x) is vanishingly
ian approximation. This interaction comes from the bilinear COU-gmall for x=5 Equation(23) shows that this membrane-
pling betweensl and 54, . (@ A small region that has higher o giated interaction is attractive between junctions of the
density in the junctions with greater natural hei¢itlower density same type, and repulsive between junctions of different

in the junctions with smaller natural heighinduces a positivedl. —  heq This interaction is short ranged with a characteristic
Two regions with positivesl can reduce the bending elastic energy lenathm~Y4_ Also notice that the contribution frofi is

of the membranes by moving close to each other. Similarly, a region 9 t Il A2 | h . b di 1 di
with negativedl attracts another region with negative due to the proportional toAj,, 1.e., there Is no membrane-mediated in-

cost of membrane bending energy) A small region with positive teractions in the level of Gaussian approximations when the

Sl repels a region with negativél because of the bending elastic j_unCtIOIjS have the same he'ghF' The physical picture ,Of this
energy cost of the high-curvature region between them. interaction can be seen from Fig. 5. A small perturbation of

the junction density from the hard membrane solution in-
duces a deviation of membrane-membrane distance from
lelf d2r (A1 81+ A8, (S1)2 (21)  hwm, and there is a membrane bending energy associated with
2 any given distribution of nonuniform membrane-membrane
distance. To reduce the bending energy, a region with posi-
is the nonlinear coupling betwee#t and d¢,,, andH, in-  tive 8¢, attracts a region with positivé¢, ) in order to
cludes terms that are linear &, . reduce the elastic energy cost of a “pit” or a “bump” be-
First | discuss the contribution froi,, i.e., the Gaussian tween these two regions due to the nonunifdr(n). Simi-
fluctuations around the hard membrane solution. In thidarly, a region with positived¢, repels a region with positive
Gaussian approximatiorfr, has acquired two correction §¢,, in order to reduce the bending energy cost due to the

terms that can be expressed by high curvature configuration between these two regions. This

also explains the fact that these interactions vanish when
2 both types of junctions have the same height, ig,=0. A

) > In———— similar kind of membrane-mediated nonlocal interaction be-

a g +Ig™+m, tween the junctions is discussed in the celebrated paper by
Bruinsma, Goulian, and Pinc(i$9], where in their “van der

[lydm_(q)+ Apdm_(q)|? Waals regime,” the competition between the potential mini-

- 2 2 ; (22) mum due to the van der Waals interaction between the mem-
q qg*+Ig+m,

branes and another potential minimum due to the stiff mem-
) . brane junctions results in a strong interaction between the
for convenience | have defingd. =A;¢1m*Aydov, @nd junctions. Although there are only one type of junctions in
om.=A16¢1* Ay6¢,. The first term is independent of ihe system discussed in REE9), the interaction between the
6¢,, therefore | neglect it in the rest of the discussion. Thejunctions in Ref.[19] and the present case share the same

second term is a membrane-mediated nonlocal interactiophysical mechanism, i.e., the bending elasticity of the mem-

between the junctions. This interaction has two characteristig anes mediates this interaction.

o= 14 : : L ; . .
lengths:m_ *** is the distance it takes for a perturbation in  Another type of nonlocal interactions between the junc-

membrane-membrane distance to relax back to its hard menfions can be studied by considering the effect of nonlinear
brane solution due to the membrane bending rigidity, anothegouplings betweerl and 8¢,,. This is done by including
length isT' 2, for lengths greater thahi 2 the elasticity  the contributions fromH; perturbatively to one-loop order.
of the membrane is dominated by the surface tension of thghe resulting effective interaction free energy between the
membrane, and the contribution from the bending rigidity isjunctions,F., now has the form

negligible. In the rest of this paper, | focus on the case when F—Fu+F-tF  +H 24
I'<ym,, in which the membrane bending rigidity is the cTIMTTGT Tloop T T 24
dominant effect that drives a perturbationhrback toh,, , whereF ), is the hard membrane solution Bf., Fg is the

thus the contribution from surface tension of the membranesontribution from terms that are bilinear & and ¢, , and

is negligible. To understand the nature of the nonlocal interf,,, is the contribution from the nonlinear couplings be-
action, it is convenient to transform the second term to reatween sl and ¢, to one-loop order. The details of the cal-
space. Calculations in the Appendix show that, wHen culations forF .., are discussed in the Appendix. Whén
<m., the second term in the real space has the form that isc Jm_, the resuli(up to terms quadratic iA¢,) is provided
derived in Eq.(A3), by Egs.(A5), (A7), and(A9),
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1 Here the first term on the right-hand side is the hard mem-
Floopz—f d2r(A18¢1+Ay8¢,) brane solution, the second term comes from the entropy of

16Vym, the junctions, the third term is the nonlocal interaction be-
tween the junctions due to Gaussian fluctuations, the fourth

_ 1 f d’q 1 and the fifth terms come from the nonlinear couplings be-
16ym. ) (2m)2 g*+4m. tween 8 and 5¢,,. Notice that the contribution froni,,

5 does not appear in the total free energy of the system, it

X[A18¢h1(q)+ A28¢,(a)|?. (25 cancels with the linear terms in the expansion of the entropy

Here the first term is a “renormalization” of the chemical of the junctions. This is becausﬁgM minimizes the hard
potentials of the junctions due to membrane ﬂuctuationsmembrane free energy, therefore in the expansion around the

This term effectively reduces the binding energies of thehar(:] nﬁmb[ﬁ:\e SOI;’F'I;)T terfms that alre I|nea|16¢|ﬂ (i_anctal
junctions. The fact that the renormalization of the chemicafach © ?r'd € contri E lon rorp one-loop %a cula 'Oni] ow-
potential for the softer junctions is less significant comparec?ver’ includes terms that are linear &, because they

to that for the stiffer junctions is because the membrane fluctome from the nonlinear couplings betwed#, anddl. An

tuations are energetically less costly for the softer junctionsMPOrtant consequence of the presence of these terms is that,
eneral, the equilibrium values &, and 6¢, are non-

The second term is a fluctuation-induced nonlocal interactio{! 9 g
between the junctions, and higher-order terms are neglecte@€r® due to the membrane fluctuations. Therefore when a
Notice that, as discussed in the Appendix, the second term iRNase separation occurs, the valuespgft ¢, are different
Eq. (25) is actually an approximate form of the much more I domains with different values a.
complicated true result; it provides the correct asymptotic 10 discuss the correction @, andh(r) due to the ther-
behavior of the true result at large and srealimits in the mally activated fluctuations, it is convenient to express Eq.
case whenl'<m,. Similar to the case of Gaussian ap- (25 @S
proximation, when the fluctuation-induced interaction be-
tween the junctions is expressed in real space, one finds that G=F +f d2

. : . . ; ' = r[op10¢p1(r)+ Spuoaddo(r
the interaction between the junctions is nonlocal, short M [0110¢1(1)+ 6p2062(1)]

ranged, and has a characteristic length on the ordeﬂ&f“. d%q
Since F40p is nonvanishing even when,=0, it is clear + f M 5 5 2
that the thermal fluctuation of the membrane-membrane dis- aEB (2m)? as(A)00a(@)204(a),  (27)

tance is the mechanism that induces the nonlocal interactions
between the junctions iRj,,,. This is similar to, but not the \here
same as, the interaction between the junctions in the “Hel-

frich regime” discussed in Refl19]. In Ref.[19], the inter- A
action between the junctions in the Helfrich regime comes Spu = S
from the collisions between the membranes. Here in the one- 16ym,
loop calculation the interaction between the junctions comes
from the fluctuations of the membrane-membrane distance 1 A2 m._\2
around the hard membrane solution; the effect of membrane My(q)=—— h — __) Af
collisions is not included. 2éim g*+m, m,
When the fluctuations around the hard membrane solution )
are taken into account to one-loop order, the total free energy . 1 A1
of the system to second order &%, can be expressed by 16ym, g*+4m,’
29
dq (& 1 (
G=FM+I Q—)Z(Elmwﬁba(QHZ MadS) 1 A 1. m)2A2
T a= @ = — -
224 2dov  g*+m, m.) 2
[ Lo o |11 Adgu@ A2
- - 1
(2m)? g*+m, m, |10 - 2
) 16ym, g*+4m,
m_
—| 1+ —A58
m+) 266,(Q) ﬁ o2
M =M = 1-{—] [A4A
1 f d2q 1 i 129) 21() rm. <m+) } 12
16ym. ) (2m?qi+am, 001
1 AA,
2 1 2 N 4 :
+A28¢,5(q)|°+ ——=—| d°r(A18p1+A28¢,). 16ym, g*+4m,
16ym,

(26) Now 6¢,(q) can be expressed hju, andM .z,
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-1 separation. When.=0, both types of junctions have the
o¢1(q) + 5¢2(Q):5(Q)><m{(Mzz—le) Opa same flexibility, and the phase separation is driven by the
height difference of the junctions. Under this condition the
+(My—Myp) duyt, phase separation is very similar to the Flory-Huggins theory

(29) for a binary mixture. Phase separation occurs wi. +
>2 andu_=0, the phase coexistence curve ends at a criti-

-1
0¢1(q) — 5¢2(Q)=5(Q)><m{(M22+M21) Suq cal point u_=0, AZA,=2. When \#0, the junctions
€ have different flexibilities, and the softer junctions are easier
— (M 3+ Myo) Sus), to form than the stiffer junctions. Therefore the softer junc-

tions have a tendency to aggregate. In this more general case,

where deM =M ;M »—M,M,,. This rather complicated the height difference and the junction flexibility difference
expression shows that, besides , A andAﬁA+ the an- both drive the phase separation, thus the phase separation

2
swer to the question of which domain has higher total junc_car_}_r(])ccgr atA.hA+ﬂ< 2t i d the hard b i
tion density when the phase coexistence occurs also depenﬁﬁ € Laussian fluctuations around the hard membrane so

on the values of\2 and ¢, (to determin one needs ion reveals a membrane-mediated nonlocal interaction be-
h aM 7 &bam » . tween the junctions. This interaction is short ranged, which
to know the value ofw ). In this paper | shall not discuss

. . X decays with a characteristic length A(¢,\

the detall_s of the values od>.1+ ¢, for different given pa- +A_¢_y) Y It is attractive between the same type of
rameters in the theory, but simply comment that wherMiet jnctions, but repulsive between different types of junctions.
is positive, the phase diagram of the hard membrane solutiofe strength of this interaction is proportionalAd , and it

is not modified by the thermal fluctuations. However, whenig qe to the membrane bending energy cost between regions
detM <0, the hard membrane solution is not stable at anyyith different junction densities. Perturbation theory to one-
finite temperature. The result in EQ9) also provides some |oop order shows other effects of thermal fluctuations, this
criteria for the current analysis. For example, when the flucincludes a renormalization of the chemical potential of the
tuations are large, the deviation from hard membrane soluunctions, which effectively reduces the binding energies of
tion can no longer be treated by perturbation theory. This ishe junctions, and a nonlocal interaction between the junc-
true whenéo,/¢,~0O(1). Since ¢, becomes large for tions which is independent af,,. The fact that the contri-
small detM, which occurs at smalin, =A 1+ Ardom, bution from one-loop calculation is nonvanishing even when

| conclude that the perturbation theory breaks down at smajunctions of type-1 and type-2 have the same height indicates
junction densities. Finally, | point out that the collisions be-that this contribution is a result of thermal fluctuations of the
tween the membranes are also neglected in the present anatgtembranes. Hence it is nonvanishing at all finite tempera-
sis. This approximation is valid when the fluctuation of tures. The current analysis also shows that when perturbation
membrane-membrane distance is not large, i.e., when theory holds the thermal fluctuations do not modify the hard
membrane phase diagram, they only modify the equilibrium

V((81)%)g d%q 1 V24 junction densities in each phase. However, when the contri-
hy = f 2m2 gt +m m bution from one-loop calculation becomes very large, the

+ hard membrane solution is qualitatively incorrect, and the
1 effect of thermal fluctuations is a dominant factor. This can
~————=<0(1). (30)  occur at very low junction densities. The Gaussian fluctua-

4m1+’4h,\,| tions of the membrane-membrane distance also provide an-

other limit of the present analysis: the mean squared fluctua-

In the regime wherem¥*hy,=(A1d1y+Ardonm) hy tions of the membrane-membrane distance should be small
=<0(1), i.e., when the junction densities are small, or thecompared td,,. As a result, the analysis in this paper does
when junctions are very soft, or when the junctions are veryhot provide the complete physical picture of the system for

“short,” the contributions from membrane collisions should very soft or very short junctions, either.

be taken into account for a complete analysis of this system. In summary, mean field and fluctuation analysis of a

Thus, when the membrane fluctuations or the membrane cosimple coarse grained model for adhesion-induced phase
lisions become important, numerical simulatiof®0] or  separation of multiple species of membrane junctions is stud-
other methods that take the full membrane fluctuations intded in this paper. This model shows rich behaviors that cap-
account should be applied to study the physics of this systure much of the physics of multispecies membrane junction
tem. separation induced by adhesion. | show that not only the
difference of junction height, but also the difference of junc-
V. SUMMARY tion flexibilities, and the membrane—medigted interactions

between the junctions play important roles in the phase sepa-

| have discussed the phase separation of multiple specigation. The fluctuation analysis also shows that current analy-
membrane junctions induced by membrane-membrane adhgis does not provide the complete physical picture for sys-
sion with a continuum theory. In the hard membrane approxitems with very soft or very short junctions, or in the situation
mation, where the membrane-membrane distance and jungrhen the junction densities are extremely low, where the
tion densities are assumed to be constants, | findﬁNﬁah thermally activated membrane fluctuations or the Helfrich

and \ are the important parameters that govern the phaseepulsion between the membranes become important interac-
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tions in the systenj19]. In this regime, numerical simula-  G(x)
tions[7,20] should provide valuable information on the dis-
tribution of the junctions, as well as a complete picture of the N
phase diagram, which includes the binding-unbinding transi- \

tion between the membranes, and adhesion-induced phase

separations.
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FIG. 6. The shape of the Meije® function G(x). Although
G(x) oscillates very weakly, and has a local minimum close to
=5, the important feature d&(x) is that this function is vanish-

In this appendix, | discuss the details of some calculationd'gly small whenx=5.
mentioned in the text. For simplicity | define

APPENDIX

[lmom., (a)+ Apdm_(q)|?

Fe=— 4 2
oM (r)=A16¢1(r)+Az06,(r), a q'+T'gq°+m,
Al
(AD . @2q [1ym. (q)+ Apom_(a)]?
5m,(r):A15¢1(r)_A25¢2(r). - (277_)2 (:]44_1"(_-12_‘_[-'.]+
First, an integral that is very useful for the rest of this appen- fdz fdz G(|r r |m1’4
dix is calculated:
m_ m_
J d2q A(q)B(_q) X 1_m—+ A15¢1(r)_ 1+m_+ Az&(ﬁz(f)
(2m)? q*+m, m m
X| | 1= —|A18¢(r’ —(1+— Ay8¢,(r' }
fdz fdz f d?q A(r)B(r')eld =" m+) 1) m, | 20021
(2m)? g*+m., (A3)
1 where the last expression holds whigr\m,, and the in-
f d? f d? tegral in Eq.(A2) is used to calculate the Fourier transfor-
mation from the momentum space to the real space. The
o dx xJo(x|r —1'|m 1,4 range of this membrane-mediated interaction between the
X X0 A(r)B(r’) junctions is determined by the shape®fx), which sets the
0 2m x4+ length scale of this interaction 1o /4.

Next | show that the interaction between the junctions due
sz szr’G(|r r MY A B(r), to the contribution ofH, is of the form in Eg.(25. The

877 / effective interaction free energy between the junctions is
A2
(A2) —In f D[h]e Hm~Ho=Hi=Hy
whereG(x) is a MeijerG function[18]. Also,
=Hy+Hg—In J D[&l]e Mo~ (A4)
m, X<1 I .
G(X)m[ When the contribution oH; is included by a one-loop cal-
0, x=5. culation,

_ 142y 2
The shape of5(x) is plotted in Fig. 6. Fe=HuTHy+Fot(Hyom2((H1)o=(H1)0)

Now | consider the nonlocal interaction between the junc- =Fu+Fg+FiooptHy. (A5)
tions in the Gaussian approximation. Neglecting the first
term of Eq.(22), the second term can be expressed by Here
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Fu=H Fe=—1I f H L 2
m=Hm, Fe=—In | D[sl]e "0}, (H1)o=5 | dr[A18¢1(r)+A25¢5(r) K81 (r)]%o
and 1 d?q
_5( f (2m)? q4+Fq2+m+)[A15¢l(r)
fD[éI]Oe_HO . J
(O)o= (A6) T A20¢,(r) ]~ d?r[A18¢y(r)
fD[aue—Ho 16ym..
FA2865(1)]. (A7)

for anyO. The calculation ofH, ) is straightforward, which  Terms of higher order thaﬁ¢§ have been neglected. The
in the casd"<{m, leads to calculation for(H3?), is longer but also straightforward,

<H§>O=%f dzrfd2r’(5l(r)5I(r)6l(r’)5l(r’)>05m+(r)5m+(r’)

|
2
Again, terms of higher order thaﬁqﬁi are neglected. When the contribution from the surface tension can be neglected, the

following form provides a good approximation @f%),—(H;)2 [21]. This form gives the correct asymptotic behavior of the
true result at large and smalllimits,
2 |5m+(Q)|2

(Mo~ (R~ o
! ° 8ym. q*+4m;,
X[A181(r")+A0¢,(r")].

Putting(H,)o and(H2),—(H)2 together leads to the resulting expressiorFgfin the one-loop order, which is given in Eq.
(24) and Eq.(25). The real space form @¢H?),— (H,)3 also shows that the membrane fluctuation induced interaction between

d?q
(2m)?

d?q’ 1 1
(2m?2 q"*+Tq'?+m, (q+q)*+T(g+q")%+m

= |om.(a)]2+(Hy)3. (A8)

1
= 647T\/m_ij dzrf d?r ' G[|r—r'[(4m ) Y[ A18¢1(r)+ A28¢a(r)]

(A9)

the junctions is short ranged with a characteristic length on the order;é’i“.
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