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Abstract

We compare the distributions of occurrence frequencies of oligonucleotides two to ten bases long (2

to 10-mers) in microbial complete genomes with corresponding distributions obtained from random

sequences and find that the genomic distributions are uniformly many times wider in a universal

manner, that is, the same for all microbial complete genomes. The difference increases with de-

creasing word length, with the genomic spectral width about 40 times wider for 2-mers. We show

that the observed genomic properties are characteristic of sequences generated in a simple growth

model, where a very short initial random sequence (less than 1 kb) grows mainly by maximally

stochastic duplication of short segments (of about 25 b). We discuss a number issues related to the

findings and the model, including the proposition that life began in an RNA world before the birth

of proteins.

Key words: Complete microbial genomes - Oligonucleotide frequency - Statistical analysis -

Genome growth model - Short segmental duplication - Evolution - RNA world
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Introduction

There is a long history of textual analysis of DNA sequences and, with the success of the Human

Genome Project, such activities have intensified with time. This paper concerns a type of analysis

that, as far as the authors are aware, has not been reported in the literature before. It is about the

anomalous spectral widths of the distributions of occurrence frequencies of short oligonucleotides in

complete microbial genomes. For very short oligonucleotides these widths are astonishingly large

compared to what are expected of random sequences. Detailed study of such widths of all complete

microbial genomes reveals a universality concerning them, which in turn leads to a genome growth

model that has many interesting implications.

It is a general rule of statistics that the larger the system the more sharply defined its average

properties. When very large numbers of apples are randomly dropped into barrels, the distribution

of apples in the barrels is governed by the Poisson distribution. If 1,024 apples were dropped into

sixty-four barrels, there is a 5% chance that one of the barrels would have less than 8 or more than

24 apples. If 1 million apples were dropped into the barrels the chances that the number of apples

received by any barrel falling outside the range of 14,600 to 16,600 would be exceedingly small, and

there is a less than one in 10980 (10830, respectively) chance that one barrel would get as few (many)

as 8,000 (24,000) apples.

Microbial genomes are seemingly random systems when viewed as texts of the four bases rep-

resented by A, C, G and T. To count the number of times each of the sixty-four trinucleotides, or

3-mers, occur in a genome-as-text is similar to counting the number of apples after they have been

dropped into barrels. The genome of the bacterium Treponema pallidum, the causative agent of

syphilis, is about 1M base pairs long and has almost even base composition [1]. In an astonishing

departure from what is expected of a system of its size, the genome has six 3-mers (CGC, GCG,

AAA, TTT, GCA, TGC) occurring more than 24,000 times per 1 Mb and two (CTA, TAG) less

than 8,000 times. Scrambling the genome sequence thoroughly restores it to a random sequence

obeying Poisson distribution and the large-system rule.

T. pallidum is not exceptional in disobeying the large-system rule. For the twenty-five complete

microbial “Class A” genomes whose combine probability p for AT or CG content is 0.46 to 0.55,

the observed standard deviation (std) of the distribution of the frequency of occurrence of 3-mers
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Table 1: For given k’s, standard deviation of k-distributions from p ≈ 0.5 sequences: for the genome T.
pallidum; averaged over 25 Class A genomes; for a p = 0.5 random sequence; for a p = 0.5 model sequence
(see text). All stds are normalized to correspond to a sequence with p = 0.5 (see Methods).

k T. pallidum Class A genomes Random Model
2 8227 10610±2107 250 8207
3 3977 4379±707 125 3415
4 1384 1490±232 62.5 1202
5 434 468±72.5 31.2 402
6 129 141±22.3 15.6 134
7 37.5 41.6±7.0 7.8 45.3
8 11.0 12.3±2.3 3.9 15.9
9 3.4 3.76±0.85 1.9 5.9
10 1.3 1.29±0.34 1.0 2.3

per 1 Mb (hereafter called 3-distribution) is 4,080±630 around the mean of 15,625. This is about

32 times the std of a Poisson distribution of the same mean that a random sequence would yield.

Nor is the statistics of 3-mers special in genomes. In Table 1, column 3 gives the std of the

k-distribution, k = 2 to 10, averaged over the twenty-five Class A genomic sequences and column 4

gives the std for a Poisson distribution with mean value 106/4k. The genomic stds approach those

of a random sequence when k increases beyond 10. For k less than 10, the Poisson std increases as

2−k with decreasing k whereas the genomic std increases at a much higher rate, such that already

at k=8 the genomic std is many times greater than the Poisson std. Because the variance in the

genomic std is typically much smaller than the difference between the genomic and Poisson stds,

the genomic k-distribution differs from the Poisson distribution in a universal fashion. Hence we

shall speak of a universal (Class A) genome.

The base composition of a genome has a conspicuous effect on its k-distributions. The black

curve in Figure 1 shows 6-distributions of three representative genomes: (A) T. pallidum with

p ≈ 0.5; (B) Chlamydia muridarum [2] with p ≈ 0.6; (C) Methanococcus jannaschii [3] with p ≈ 0.7.

For comparison the cyan curves in the figure show 6-distributions of random sequences with p =

0.5, 0.6 and 0.7, respectively. The k-distribution of a random sequence is composed of k+1 Poisson

distributions with mean frequencies 106 2−kpm(1-p)k−m, m=0 to k, which coalesce into a single

Poisson distribution when p is close to 0.5. In contrast, narrow sharp spikes are completely absent

in the 6-distributions for the microbial genomes.

Microbial genomes are large systems with small-system statistics

When examined with a length scale that is short enough, microbial genomes have the statistics
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Figure 1: Comparison of 6-distributions of genomes (black) and random sequences (cyan), with abscissa giving
the frequency of occurences of 6-mers and ordinates showing the number of 6-mers having a given frequency:
(A) T. pallidum genome and a random sequence with p = 0.5; (B) C. muridarum genome and a random
sequence with p = 0.6; (C) M. jannaschii genome and a random sequence with p = 0.7

of multiple replications of random genomes much smaller than itselves. To see this, we define the

“root-sequence length” Lr of the universal genome as the length of a random sequence that has a

k-distribution with a mean to std ratio equal to that of the observed genomic ratio r. This implies

that Lr=4kr2. Because r has a strong k dependence, so does Lr. Its values for the various k’s are

given in column 2 of Table 2. Column 3 gives almost identical results extracted from “Class C”, or

p ≈ 0.7, genomes (see Methods). It is seen that Lr is very short for the smaller k’s - of the order of

1 kb or less for k≤3 - and grows rapidly with k. When k=10 it is about half the length (normalized

to 1 Mb) of the real genome.

Another way of understanding the meaning of Lr is the following. If for some k the root-sequence

length of a genome of length L is Lr, then the k-distribution of the genome will be the same as

that of a sequence obtained by replicating L/Lr times a random sequence of length Lr(so that that

sequence and the genome have the same length). From Table 2 we see that, say, the 2-distribution

of a (typical) genome of length 1 Mb has about the same width as that of a 2000-fold concatenate

of a 500 b long random sequence, and the 6-distribution of the genome that of a 77-fold concatenate

of a 13 kb long random sequence. All of this suggests that, depending on the length scale k with

which it is examined, a microbial genome has the statistical characteristics of a replicate of a much

shorter random sequence when k < 10.
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Compared to a random sequence, a typical genome has very large numbers of both overrepre-

sented and underrepresented oligonucleotides. For instance, the genome of E. coli [4] has has 500

and 510 6-mers whose frequencies of occurrence are greater than 400 and less than 100 per 1 Mb,

respectively, while a 1 Mb random sequence has none in either category. On the other hand, a 1

Mb sequence obtained by replicating 77 times a 13 kb (Lr for k=6) random sequence would have

overrepresented and underrepresented 6-mers as numerous as those in E. coli. There are many

known examples of individual oligonucleotide that exhibit extreme relative abundance. For 2-mers

this was noted to be common and has genome-wide consistency [6]; 4- and 6-palindromes are al-

most always underrepresented in bacteriophages and are systematically underrepresented in bacteria

where 4-cutting and/or 6-cutting restriction enzymes are common [5]; an 8-mer that appears as Chi

sites, hotspots of homologous recombination, is highly overrepresented in E. coli [7]; in the human

pathogens Haemophilus influenzae [8, 9] and Neisseria [10] there are 9- and 10-mers functioning

as uptake signal sequences that are vastly overrepresented. The causes for these extreme cases are

generally not known but generally such individual cases do not decisively determine the statistical

properties of a genome.

What caused a genome to have k-distributions so much wider than those of a random sequence?

Natural selection suggests itself as a prime explanatory candidate. For instance, the 64 frequencies

of codons, 3-mers used by the genome to code proteins in genes, exhibit very wide distributions.

Yet the occurrence frequency of codons is not a deciding factor of the 3-distribution of a genome.

This is because: (a) The 3-distribution is read with a sliding window that moves one base at a time,

while codons must be read by a sliding window that moves three bases at a time. (b) In a single

Table 2: Universal statistical lengths of microbial genomes. Genomes in Class A have p ≈ 0.5 and those in
Class C have p ≈ 0.7.

Lr (kb)
k Class A genomes Class C genomes
2 0.65± 0.35 0.53±0.30
3 1.0± 0.3 1.1±0.6
4 1.9± 0.5 2.1±1.1
5 4.7± 1.3 5.2±2.5
6 13± 4 14±6
7 37± 12 36±17
8 110± 40 93±44
9 300± 130 230±110
10 640± 300 600±240
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strand of a microbial genome, typically about 80 to 85% of the sequence is coded, and the coded

portion is about equally divided among positively and negatively oriented genes; this means that

only about one in every seven 3-mers read by a sliding window over the whole genome is a codon.

(c) This one-seventh contribution from codons is further reduced by the fact that the deviation

from randomness in the 3-distribution caused by positively oriented genes is often mostly canceled

by that caused by negatively oriented genes. This canceling effect is seen most clearly in the case

of base composition in genomes: In most genomes, say, the A and T contents in coding regions

may be quite different, but contributions to the difference from coding regions in the two opposite

orientations usually cancel such that overall the A and T contents for the whole genome are always

almost equal.

If unequal codon usage is not the dominating cause for the large width of 3-distribution, then

it also cannot be the cause of the large widths of other k-distributions.

Model for early genome growth

The mechanism generating the large width of genomic k-distributions must still be part of natural

selection - everything about evolution is, but it probably is not single mutation. We believe the

age of the universe is not long enough for the combined actions of single mutation and natural

selection to generate genomes with widths of k-distributions as wide as those reported here. Here

we propose a biologically plausible model for the growth and evolution of a universal genome that

can generate the observed statistical characteristics of genomic sequences. The model is very simple

and consists of two phases. In the first phase the genome initially grows by unspecified means to

a random sequence whose size is much smaller than the final size of the genome. In the second

phase the genome grows by random segmental duplications possibly modulated by random single

mutations. In this work a snapshot is taken of the model sequence shortly after it reaches a length

of 1 Mb. The key aspect of the model is growth by segmental duplication, the most straightforward

and biologically viable way for the universal genome to become what it appears to be - a large

system that exhibits small-system statistical characteristics.

Growth by whole-genome duplication [11, 12, 13] coupled with mutation is ruled out because

such a mode of growth yields genomes whose k-distributions have the incorrect k-dependence - their

Lr vary with k too weakly. Indeed we found it comparatively easy to generate a sequence that could

faithfully reproduce the genomic k-distribution for any given k, say k = k′, but not simultaneously

6



Table 3: Name, GenBank code, length and base composition of microbial complete genomes analyzed in the
paper; pAT is the combined probability of A and T in the genome, and p is the greater of pAT and 1 − pAT .
Top-half entries are the 25 Class A genomes with 0.46 ≥ p ≥ 0.55 and the bottom-half are the 28 Class C
genomes with 0.66 ≥ p ≥ 0.75.

Code Name length (M bp) pAT p
NC 000853 Thermotoga maritima 1.86 0.54 0.54
NC 000868 Pyrococcus abyssi 1.76 0.55 0.55
NC 000911 Synechococcus sp. PCC 6803 3.57 0.52 0.52
NC 000913 Escherichia coli K12 4.64 0.49 0.51
NC 000916 Methanobacterium thermoautotrophicum 1.75 0.50 0.50
NC 000917 Archaeoglobus fulgidus 2.18 0.51 0.51
NC 000919 Treponema pallidum 1.14 0.47 0.53
NC 002488 Xylella fastidiosa 9a5c 2.67 0.47 0.53
NC 002505 Vibrio cholerae chromosome 1 2.96 0.52 0.52
NC 002506 Vibrio cholerae chromosome 2 1.07 0.53 0.53
NC 002578 Thermoplasma acidophilum 1.56 0.54 0.54
NC 002655 Escherichia coli O157:H7 EDL933 5.52 0.50 0.50
NC 002695 Escherichia coli O157:H7 5.49 0.49 0.51
NC 003112 Neisseria meningitidis serogroup B strain MC58 2.27 0.48 0.52
NC 003116 Neisseria meningitidis serogroup A strain Z2491 2.18 0.48 0.52
NC 003143 Yersinia pestis strain CO92 4.65 0.52 0.52
NC 003197 Salmonella typhimurium LT2 LT2 4.86 0.48 0.52
NC 003198 Salmonella enterica subsp. enterica serovar Typhi 4.80 0.48 0.52
NC 003364 Pyrobaculum aerophilum 2.22 0.49 0.51
NC 003450 Corynebacterium glutamicum ATCC 13032 3.31 0.46 0.54
NC 004088 Yersinia pestis KIM 4.60 0.52 0.52
NC 004113 Thermosynechococcus elongatus BP-1 2.59 0.46 0.54
NC 004337 Shigella flexneri 2a str. 301 4.60 0.49 0.51
NC 004347 Shewanella oneidensis MR-1 4.96 0.54 0.54
NC 004431 Escherichia coli CFT073 5.23 0.50 0.50
NC 000908 Mycoplasma genitalium 0.580 0.68 0.68
NC 000909 Methanococcus jannaschii 1.66 0.69 0.69
NC 000962 Mycobacterium tuberculosis 4.41 0.34 0.66
NC 000963 Rickettsia prowazekii strain Madrid E 1.11 0.71 0.71
NC 001263 Deinococcus radiopugans R1 chromosome 1 2.64 0.33 0.67
NC 001264 Deinococcus radiopugans R1 chromosome 2 0.412 0.33 0.67
NC 001318 Borrelia burgdorferi 0.910 0.71 0.71
NC 002162 Ureaplasma urealyticum 0.751 0.75 0.75
NC 002163 Campylobacter jejuni 1.64 0.69 0.69
NC 002516 Pseudomonas aeruginosa 6.26 0.33 0.67
NC 002528 Buchnera sp. APS APS 0.640 0.74 0.74
NC 002607 Halobacterium sp. NRC-1 2.01 0.32 0.68
NC 002696 Caulobacter crescentus 4.01 0.33 0.67
NC 002745 Staphylococcus aureus subsp. aureus N315 2.81 0.67 0.67
NC 002755 Mycobacterium tuberculosis CDC1551 4.40 0.34 0.66
NC 002758 Staphylococcus aureus strain Mu50 2.87 0.67 0.67
NC 002771 Mycoplasma pulmonis 0.963 0.73 0.73
NC 003030 Clostridium acetobutylicum ATCC824 3.94 0.69 0.69
NC 003103 Rickettsia conorii Malish 7 1.27 0.68 0.68
NC 003106 Sulfolobus tokodaii 2.69 0.67 0.67
NC 003295 Ralstonia solanacearum 3.71 0.33 0.67
NC 003296 Ralstonia solanacearum 2.09 0.33 0.67
NC 003366 Clostridium perfringens 3.03 0.71 0.71
NC 003454 Fusobacterium nucleatum subsp. nucleatum ATCC 25586 2.17 0.73 0.73
NC 003888 Streptomyces coelicolor A3(2) 8.66 0.28 0.72
NC 003923 Staphylococcus aureus subsp. aureus MW2 2.82 0.67 0.67
NC 004061 Buchnera aphidicola str. Sg 0.641 0.75 0.75
NC 004432 Mycoplasma penetrans 1.35 0.74 0.74
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those of other k’s. Typically such a sequence had an Lr that has a k-dependence far too weak than

required to fit genomic data and, consequently, k-distributions that are too narrow when k < k′

and too broad when k > k′. Ways to generate several such examples are given in the Methods.

Generating a sequence that would emulate a real genome was a much more exacting task.

Results

After extensive experimentation, it was found that sequences having the statistical characteristics

sought after could be generated by choosing: (i) the length (L0) of the initial random sequence to

be approximately 1 kb; (ii) the average length (l̄) of the (randomly chosen) duplicated segments

to be 25b with a spread (δl) of approximately 11b. It is emphasized that every step in the growth

procedure is taken stochastically.

The stds of the k-distributions of a p = 0.5 model sequence thus generated are given in column

five of Table 1. They agree quite well with the observed genomic values in columns 2 and 3 although

their k-dependence is still slightly too weak. Histograms of k-distributions of T. pallidum (black)

and the model sequence (orange), k=2, 3 and 4, are compared in Fig. 2. In all three cases, the

histogram for a random sequence would be represented by a single narrow tower located at the mean

Figure 2: Histograms of k-distributions for genome of T. pallidum (black) and a p = 0.5 model sequence
(orange), k=2 to 4, with abscissa indicating intervals of frequency of occurrence of k-mers and ordinates giving
the number of k-mers falling within a given interval of frequency of occurrence. In each case the histogram of
the k-distributions for a random sequence would be represented by a single tower located at the mean frequency
1064−k.
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Figure 3: k-distributions for genome of T. pallidum (black) and a p = 0.5 model sequence (orange), k= 5 to
9. See legend of Fig. 1 for further detail. The cyan curve in the top-left panel is the 6-distribution for a p = 0.5
random sequence.

frequency. For k=2 and to a lesser extent k=3, the histograms for both genomic and model sequences

display large fluctuations. The model sequence is not expected to exactly reproduce the counts of

the genomic sequence. Indeed, generated stochastically, another model sequence (generated using

the same parameters) will yield histograms that differ in detail from those shown in the k=2 and

3 panels of Fig. 2 but show patterns of fluctuation still similar to those exhibited by the genomic

sequence and have stds very close to those given in column 5 of Table 1. Fig. 3 shows comparisons

for k=5 to 9. The panel in the top-left corner gives the 6-distributions from T. pallidum, a random

sequence (cyan) and the model sequence. In every case the model sequence succeeds in broadening

out the narrow peaks that come with a random sequence and has k-distributions very similar to

those obtained from T. pallidum.

The same growth model also can account for the k-distributions of genomes with p significantly

different from 0.5. We demonstrate this by comparing the k-distributions for M. jannaschii (black),

which has p ≈ 0.7, with those of a p = 0.7 model sequence (orange) in Fig. 4 (histograms for k=2, 3

and 4) and Fig. 5 (distributions for k=5 to 9). The model sequence was generated using exactly the

same procedure and parameters that generated the p = 0.5 model sequence (see Methods), except

that the initial 1 kb random sequence has p = 0.7 rather than 0.5. The top-left panel of Fig. 5

shows that a k-distribution from a p 6= 0.5 random sequence (cyan), with its k+1 narrow peaks, is

entirely distinct from a genomic distribution.
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Figure 4: Histograms of k-distributions for genome of M. jannaschii (black) and a p = 0.7 model sequence
(orange), k=2 to 4. See legend of Fig. 2 for further detail. The histograms for a random sequence would be
given by k + 1 narrow towers.

Figure 5: k-distributions for genome of M. jannaschii (black) and a p = 0.7 model sequence (orange), k=
5 to 9. See legend of Fig. 1 for further detail. The cyan curve in the top-left panel is the 6-distribution for a
p = 0.7 random sequence.

Because the Lr’s depend only on k but not on the length and base composition of the genomes

(Table 2), they are universal - same for all microbial genomes - lengths. In other words, being

a large system with small-system statistics is a universal characteristic of microbial genomes. To

summarize, the genomes: (a) have essentially identical sets of Lr’s and (b) have k-distributions that

are emulated by model sequences generated using identical parameters (but with predetermined p

values).
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The model sequences are parameter-sensitive. If L0 was significantly longer than 1 kb then no

good model sequence could be found. This is unsurprising because L0 cannot be much longer than

the shortest Lr in Table 2. If, with L0=1 kb, either l̄ or δl was changed by more than 10% from

their optimal values of 25b and 11b respectively then the agreement between the genomic and model

sequences would worsen noticeably.

Discussion

First we wish to make clear that although we have showed in Figs. 2, 3, 4 and 5 results that agree

quite well with genomic data for all k= 2 to 9, it is far easier than not for our model to generate

results that are good for one particular k and not for the other k’s. For example, in our first

application of the model in which a much longer average duplicated segment length than 25 b was

used, only 6-distributions were well reproduced but not the others [14].

In the spirit of simplicity no (point) mutations were imposed on the model sequences whose

properties are shown here. This is because mutations (not accompanied by selection) randomize

a sequence whereas we are looking for a way to stochastically generate model sequences with less

randomness than that of a random sequence. If the model sequence were allowed to have too many

mutations then a compensating mechanism would have to be found to de-randomize the sequence.

We think such a more elaborate model exists but, in favor of simplicity and clarity - because we

believe the widening of k-distributions is caused by duplication - and at the risk of some lost of

reality, prefer to present the results of our minimal model at this stage.

In reality a fixation (of a mutation) is always the combined effect of mutation and selection

and is therefore not random. However it is very difficult to model selection without ending in

a situation where the result one gets is more or less what one has specifically ordered for. For

instance one can presuppose that individual 3-mers are favored differently in a specific way by

natural selection, devise a growth model by single mutation (more insertion than deletion) based on

that supposition and get 3-distributions that agree well with data. As noted above, such a model

would not yield good results for other k-distributions. Good results for all k-distributions will be

obtained only if selection rules were given for all k-mers. Thus one would end with having an

extremely detailed model with a very large number of perameters to be determined. Leaving aside
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the question of what selection rules are to be devised such a model has two serious drawbacks: (a)

It would generate genomes that are not universal but only those belonging to one class of species,

those with relative occurrence frequencies of k-mers conforming to the selection rules. (b) With any

reasonable value we assign to the respective rates for mutation and segment duplication, it would

take the single mutation model orders of magnitude longer in time than the duplication model to

produced sequences with the observed widths for the k-distributions. This implies that natural

selection would select duplication for growth and reserve mutation for fine-tuning the outcome of

such growth.

In any case the model sequences as given here can tolerate about one mutation per two duplica-

tion events: twenty thousand mutation fixations reduces the std of the k-distributions of the Class

A model sequence by 4% (for k=2) to 10% (for k=10).

In bacterial genomes, typically about 12% of genes represent recent duplication events - 12% in

T. pallidum [1], 11.2% in H. influenzae [15] and 12.8% in V. cholerae [16]. The model sequences

presented here do not explain the pattern of all such duplications, many of which would involve

segments up to several kb long. Work is underway to extend the model to account for the genomic

pattern of repeat sequences of all lengths.

The generic statistical textual properties of eukaryotic genomes have also been examined and

findings will be reported elsewhere. So much now is believed to obtain: when the great difference in

length between microbial and eukaryotic genomes is accounted for, what is said here of the statistical

textual properties of microbial genomes should hold true mutatis mutandis for eukaryotic genomes.

To be sure there will be many textual aspects of the generic microbial genome that the growth

model proposed here will not be able to account for in detail. Nevertheless we believe the evidence

presented here is sufficiently strong to support the following proposition: the ancestors of microbial

genomes underwent a fundamental transition in their growth and evolution shortly after they had

reached a length of not more than 1 kbp and by which time they had acquired a rudimentary

duplication machinery, thereafter grew (and diverged) mainly by stochastic duplication of short

segments whose lengths averaged to about 25b. Assuming this model to be substantially correct

we mention some of its implications for biology and evolution.

Our results suggest that the base composition of a genome was essentially inherited from an

ancestor whose own composition had been determined either randomly or by some unknown cause by
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the time of the transition to growth-by-duplication. Subsequent compositional changes caused the

duplications and by natural selection would have been relatively minor. If so, the base composition

of a present-day genome should be close to being uniform over the entire genome because of the

relatively small size of the ancestor genome - regardless of how it came into being - by comparison

to present-day genomes. Indeed, this essentially holds true for genomes [6] (although coding regions

often have a relatively richer GC content [3, 15, 17, 18]) and this phenomenon is of unknown

biological significance.

A genome of the order of 1 kbp long is far too short to encode enough proteins for DNA

duplication. Setting the initial length of our model universal genome to not greater than 1 kbp at

the point of transition to growth-by-duplication thus necessarily implies that the universal genome

began its life in an RNA world, when there were no proteins and when RNAs had the dual roles of

genotype and phenotype [19]. This view of the origin of life was advocated [20, 21, 22] even before

RNA was discovered to exhibit self-splicing and enzymatic activities [23, 24]. Some RNA enzymes,

or ribozymes, are very small; the hammerhead ribozyme is only 31 to 42 nucleotides (nt) long [25]

and the hairpin ribozyme is only 50 nt long [26]. Hence we can infer with reasonable certainty

that the 1 kbp initial universal genome was of sufficient size to encode the machinery necessary for

sustained evolution and duplication (for many other issues of the RNA world see [27] for a review).

Our model does not address the origin of this initial genome. The likelihood that it evolved from

something arising spontaneously beforehand is enhanced by its short length and supported by the

successful isolation of artificial ribozymes from pools of random RNA sequences in vitro [28]. The

average duplicated segment length of 25b likely represents a good portion of the length of a typical

ribozyme encoded in the early universal genome even if it is very short compared to a present-day

gene that codes for an enzyme.

As mentioned earlier natural selection has not been explicitly included in our model not because

it is unimportant in evolution, but rather because we believe it could not have played a lead role

in generating the wide spectral width characteristic of genomes. On the other hand, the effect of

natural selection is implicitly included in our model, so far as it is a model for evolution. Natural

selection determines whether a change brought upon by segmental duplication becomes a fixation.

Furthermore, natural selection fine-tunes the fixations for adaptation.

Returning to the issue we first raised in the introduction, the extreme low probablity (less than
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10−830) that T. pallidum would have a single 3-mer (it has six) occuring more than 24,000 times in

its genome, we believe the correct way of viewing the matter is the following. The probability is

extremely low only if genomes grew and evolved mostly by single mutations. The probablity is not

at all low, indeed it is within the expected range, if genomes grew mostly by segmental duplication.

As a corollary of the above reasoning, we can consider that uneven codon usage may not have

been the primary cause of the very broad distribution of the 3-mer counts now seen in genomes. It

is much more likely that codons were evolutionary “spandrels” [29], that is to say, their rise as codes

for proteins came as a consequence of an opportunistic evolutionary adaptation to the already-wide

3-distribution that had resulted from growth by duplication. Similarly, many of the highly under-

or overrepresented oligonucleotides that now have biological functions might have originated as

spandrels.

Our analysis presented here supports the view that statistical characteristics of present day

genomes were already substantially determined by the characteristics of their ancestors by the time

of their transition to growth by duplication; conversely, that statistical characteristics of genomes

today can be regarded just in this manner as a basis from which to explore the nature and properties

of early ancestral genomes; further analysis made along this line of reasoning may bring us a step

nearer in understanding the universal ancestor [30].

Growth by duplication is in itself a brilliant strategy because it allowed the genome to utilize

hard-to-come-by codes repeatedly, thereby increasing the rates of evolution and species diversion

enormously. For this strategy to have worked, the length of the duplicated segments used and the

typical length of coding sequences must match. This condition is likely met by our model because

most ribozymes in the early universal genome must have been small. Was this strategy continued

after the “early life” of the universal genome - after the rise of codons and proteins? If so, then,

with proteins/enzymes much larger than the small ribozymes, the duplicated segments in the post-

protein era must have been much longer than 25b for the strategy to have been effective. In higher

organisms many repeat sequences with lengths ranging from 1 base to many kilobases are believed

to have resulted from at least five modes of duplication, and about 50% - perhaps even more - of

the human genome is composed of such duplications [17, 18]. Furthermore, as already mentioned,

typically about 12% of genes in bacterial genomes represent recent duplication events. So certainly,

the continuity of this strategy into the protein era is abundantly in evidence [31, 32]. In eventual
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answers to questions such as why genes have been duplicated [33] at the high rate of about 1% per

gene per million years [34], and why in all life forms so many duplicate genes are found [35, 36, 37],

this growth strategy, if adopted universally in genomes, may be a simple and crucial, indeed a

parsimonious part.

Materials and Methods

Complete microbial genome sequences

Complete microbial genome sequences are obtained from GenBank [38]. The names, GenBank

codes, lengths and base compositions of the genomes are listed in Table 3; pAT is the combined

probability of A and T in the genome, and p is the greater of pAT and 1 − pAT . The 25 Class

A genomes are given in the top half of the table and the 28 Class C genomes in the bottom half.

Counting of k-mers is done by reading through a k-base wide overlapping sliding window. Counts are

normalized to per 1 Mb and variation in genomic base composition is compensated for by dividing

the actual genomic counts by the factor L(p/p̄)m((1− p)/(1− p̄))k−m, where p is the greater of the

joint AT or CG probability, p̄ = 0.5 (p̄ = 0.7) for Class A (Class C) genomes and m is the total

number of AT bases (or CG) in each k-mer.

Generation of model sequence

A random sequence of length L0 with a given base composition is first generated. Thereafter the

sequence is altered by single mutations (replacements only) and duplications, with a fixed average

mutation to duplication event ratio. In duplication events, a segment of length l, chosen according

to the Erlang probability density function f(l) = 1/(σn!)(l/σ)ne−l/σ, is copied from one site and

pasted onto another site, both randomly selected. In the above, n is an integer and σ is a length scale

in bases. The function gives a mean duplicated segment length l̄ = (n+1)σ with std δl = (n+1)1/2σ.

The values n = 0 to 8 and selected values for σ from 3 to 15,000 were used. In the text, the model

sequences used to compare with genomic sequences were generated with L0 = 1000, n = 4, σ = 5

and without mutation events. This model has l̄ = 25 and δl = 11.2. There is nothing special about

the Erlang function except that it was a simple generalize function of the exponential function -

that we used in the first instnace - and that it provided a simple setting for discrete parameter

search: after we realized l̄ needed to be less than 50, we scanned l̄ in intervals of 5 and n in intervals
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Table 4: Standard deviations of k-distributions from from p ≈ 0.7 sequences: column 2, for the genome of M.
jannaschii; column 3, averaged over 28 p ≈ 0.7 Class C genomes; column 4, for a p = 0.7 random sequence;
column 5, for a p = 0.7 model sequence. All genomic stds are normalized to correspond to a p = 0.7 sequence
(see Methods).

k M. jan. Class C Genomes Random Model
2 38,700 37,300±5,900 36,700 36,700
3 12,600 12,200±2,060 11,700 11,800
4 3,930 3,830±680 3,520 3,580
5 1,180 1,150±220 1,020 1,060
6 347 339±69 292 311
7 101 100±22 82.8 91.8
8 29.5 29.3±6.8 23.3 27.6
9 8.62 8.58±2.13 6.68 8.74
10 2.60 2.60±0.67 2.01 2.99

of 1. Nevertheless, when f(l) is replaced by a Gaussian distribution with the same values for l̄ and

δl, respectively, less satisfactory results are obtained. Fine-tuning to find the best parameters was

not attempted.

The following are some examples that gave very good k-distributions for specific k-mers but not

generally; all were generated with L0 = 1000 and n = 0: for 6-mer, σ = 13, 000 ± 2, 000 and on

average 0.04σ mutations per duplication (these parameters also work for genomes with biased base

compositions) [14]; for 2-mer, σ = 50, no mutation; for 5-mer, σ = 30, no mutation; for 9-mer,

σ = 15, no mutation.

Sequences with highly biased compositions

The standard deviation (std) in the k-distribution of a sequence with a significantly biased base

composition is essentially determined by the value of p. This is because when p is large (i.e.,

significantly greater than 0.5), the k-distribution of even a random sequence is spread out, as is

seen in the cyan curves of the (B) and (C) panels in Fig. 1. There the sharp peaks occur at the

mean frequencies f̄m of subsets of k-mers with m AT’s (called m-sets), m= 0 to k:

f̄m = f̄2kpm(1− p)k−m, m = 0, 1, · · · , k (1)

where f̄ = 1064−k is the overall mean. When p is away from 0.5 it is possible for f̄m to be much

greater or much less than f̄ .

For a random sequence the distribution within a m-set is a Poisson distribution with mean f̄m.

If the widths of such distributions are ignored then the std for the entire k-distribution is

∆k(p) = f̄
[
2k
(
p2 + (1− p)2

)k
− 1

]1/2

(2)

16



Table 5: Mean frequency and standard deviation of k-distribution for m-sets from p ≈ 0.7 sequences: column
2, mean frequency f̄m for the set; column 3, std (and its own std) averaged over 50 p = 0.7 random sequences;
column 4, std averaged over 28 Class C genomes; column 5, std of p = 0.7 model sequence (see Methods).

Standard deviation
k,m f̄m Class C genomes Random Model
2,1 52,500 6,381±1,674 168±58 2,555
3,2 18,375 3,736±1,038 120±20 1,851
4,2 2,756 1,142±246 51.6±4.6 688
5,3 964 452±92.2 30.8±1.5 296
6,3 145 92.6±19.9 12.0±0.28 92.3
7,4 50.6 36.6±7.7 7.12±0.10 50.6
8,4 7.60 7.44±1.57 2.76±0.02 9.93
9,5 2.65 3.05±0.61 1.63±0.01 4.69
9,7 14.5 11.3±2.87 3.80±0.03 12.1
10,6 0.93 1.33±0.28 0.97±0.00 2.28
10,8 5.06 4.66±1.18 2.25±0.01 5.79

∆k(p) is zero at p=0.5 but grows rapidly when 2p deviates from 1. This means that for a random

sequence the std is given by the Poissonian value f̄ 1/2 when 2p ≈ 1 but is given by ∆k when

max{2p, 1/2p} is significantly greater than 1. This is verified by data shown in Table 4, where the

stds for the genome M. jannaschii, those averaged over 28 Class C genomes, for a p=0.7 random

sequence, and for a p=0.7 model sequence are given. The genomic results are normalized - by

dividing the frequency of every k-mer by a factor (L/106)(p/0.7)m((1− p)/0.3)k−m - to those for a

sequence 106 bases long with exactly p=0.7; L is the actual length of the genome. The entries in

the table are very accurately given by Eq. (2): ∆k(0.7)= 36,700, 11,700, 3,520, 1,020, 293, 82.5, 23,

6.4 and 1.8 for k= 2 to 10, respectively. Thus for sequences with highly biased base compositions

the std of the entire k-distribution is not sensitive to details of the sequence that we are interested

in.

k-distributions of m-sets

Such details show up in widths of the distributions of m-sets. In a random sequence the distribu-

tion of such a set is still approximately Poissonian, with its std approximately equal to the mean

frequency f̄m. The total number of k-mers in an m-set is Nm = 2k(k,m)f̄m giving
∑
mNm = 106,

where (k,m) is the binomial. Table 5 shows for some m-sets: the mean frequency (column 2);

std averaged over 28 Class C genomes (± its own std) (column 3); std averaged over 50 random

sequences (column 4); std for a p = 0.7 model sequence. In computing the genomic stds, the ge-

nomic k-mer frequencies per 1 Mb are first normalized to correspond to a sequence with p=0.7,
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then another overall normalization is made to set the total number of k-mers in the m-set to Nm.

This guarantees the genomic mean frequency of the k-mers in the m-set to be f̄m. In Table 5 it is

noticed that for k= 2 and 3 the std for the random sequence is less than f̄ 1/2
m as would be expected

of a Poisson distribution. This reflects the fact that we have ignored a binomial factor that would

reduce the std. Nevertheless in each case the std of average genomic k-distribution is either greater

or much greater (for the smaller k’s) than the std of a random sequence. The relation between

the stds of genomic and random sequences is now similar to that seen in Table 1 for the Class A

genomes. The stds for the model sequence are in general agreement with the genomic values but

has a k-dependence that is slightly too weak. Model sequences that fit the data better can be found

but that is not the primary purpose of the present study.

Computation of Lr

Denote the average genomic std for an m-set by ∆k,m and that for random sequences by ∆′k,m, then

the statistical length for the “universal” p = 0.7 genome is defined as the weighted average

Lr = L
k∑

m=0

Nm

L

(
∆′k,m
∆k,m

)2

(3)

Errors for Lr are similarly computed. The results are given in column 3 of Table 2.

Presentation of data

In Figs. 3 and 5 the curves shown are the result of a small amount of forward and backward averaging

- to remove excessive fluctuations. In Figs. 2 and 4 data bunching was used to produce the towers

shown.
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