Weak Interaction and Parity Nonconservation in the Photodisintegration and Electrodisintegration of the Deuteron near Threshold

H. C. Lee

The Niels Bohr Institute, University of Copenhagen, DK–2100 Copenhagen Ø, Denmark, and Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada
(Received 25 May 1978)

I calculate the asymmetries in the integrated cross sections for $^2\text{H}(\gamma_{\text{pol}},n)p$ and $^2\text{H}(e_{\text{pol}},n)e_{\text{pol}}^\prime p$, with left- and right-polarized incident particles. Up to 1 MeV above threshold, the rising p-wave amplitude in the final np system is shown to have not destroyed the close relation between the asymmetries and the circular polarization of the photon in $p(n_e,\gamma_{\text{pol}})H$.

One of the outstanding problems in weak parity nonconservation (PNC) in the nucleus concerns the circular polarization of the γ ray emitted in the reaction $p(n_e,\gamma_{\text{pol}})H$ for thermalized neutrons. The polarization P_γ measured by Lobashov et al. has a result which is $(2-5) \times 10^{-8}$. Since PNC measurements are one of the most sensitive tests of our understanding of the weak-interaction process in the nucleus and since the deuteron is the nucleus where such processes can be most reliably calculated, it is imperative that the Lobashov experiment be repeated or checked in other ways. Because of the recent advent of intense longitudinally polarized electron sources, the inverse reaction $^2\text{H}(\gamma_{\text{pol}},n)p$ and the closely related $^2\text{H}(e_{\text{pol}},n)e_{\text{pol}}^\prime p$ have become potential alternatives for measuring the same PNC effect in $p(n_e,\gamma_{\text{pol}})H$, which now manifests itself in the dependence of the disintegration cross section on the left or right polarization of the incident particles.

Whereas the regular p-wave in the np continuum plays no role in $p(n_e,\gamma)\tilde{H}$, its amplitude rises rapidly with energy and at 0.2 MeV above threshold it is already the dominant final state in $^2\text{H}(\gamma,n)p$. Because the disintegration cross section is zero at threshold but increases sharply thereafter, it is crucial to know the influence of the p-wave amplitude on the asymmetry at energies above threshold.

In this Letter I report calculations of the asymmetries

$$A_\alpha = F_\alpha (\sigma_\alpha - \sigma_\alpha^\prime)/(\sigma_\alpha + \sigma_\alpha^\prime), \quad \alpha = e \text{ or } \gamma,$$

for the two disintegration reactions, as functions of the energies of the incident particles; $P_\gamma (F_\gamma)$ is the circular (longitudinal) polarization of the incident photon (electrons). In the case of $^2\text{H}(e_{\text{pol}},n)e_{\text{pol}}^\prime p$, all final states are integrated over. I also report the result for $\sigma_\alpha = \frac{1}{2}(\sigma_\alpha + \sigma_\alpha^\prime)$ and the dependence of A_γ and A_e on the structure of the np system, the PNC potential, and the weak neutral current.

Previous studies of PNC in $^2\text{H}(\gamma,n)p$ have concentrated on the asymmetry in angular distributions caused by linearly polarized photons. In the several-MeV region, this asymmetry, compared to the asymmetry we are studying, is vanishingly small; it is also not directly related to the P_γ in $p(n_e,\gamma_{\text{pol}})H$. Porrmann and Gari recently calculated A_e, but only for the special case of electrons backscattering at zero momentum transfer.

I denote the parity-admitted deuteron bound state as $^1S_0 + ^3D_1 + ^3F_1 + ^1P_1$ and the s wave and p wave in the np continuum as $^1S_0 + ^3P_0$ and $^3P_2 + ^1S_0 + ^3D_2$, respectively. The continuum states are primed and the PNC admixtures are tilded. We define the quantities

$$\{e\} = \{m(0)\} = |e(1)|^2,$$

$$\{e\} = \left(\frac{1}{3} V_L(\theta) + (\Delta^2/Q^3) V_\gamma(\theta)\right) |e(1)|^2 + V_\gamma(\theta) |m(0)|^2,$$

$$\{e\} = 2Re\{m*0\} (\tilde{F}_0^\prime \|E1\|S_0^\prime + D_1^\prime - \langle S_0^\prime \|E1\|F_1^\prime \rangle + \frac{1}{2} \sum_{J=0}^{2} (2J+1) e_J e_J^* \langle F_J^\prime \|M1\|F_J^\prime \rangle + \frac{1}{2} e_J e_J^* \langle \tilde{S}_0^\prime \|M1\|S_0^\prime \rangle + \frac{1}{2} e_J^2 \langle \tilde{D}_2^\prime \|M1\|D_2^\prime \rangle\},$$

where θ is the electron scattering angle,

$$V_L(\theta) = (q + \delta/Q^3) (e_i + e_j) / Q^3 - 1,$$

$$V_\gamma(\theta) = \frac{1}{2} (q + \delta/Q^3) (e_i + e_j) / Q^3 + 1 - 2m_e^2 / Q^3,$$
Computation details will be given elsewhere. As a test of the model I compare in Table I the result for \(P_e \) in \(\rho(n\nu, \gamma_{pol})^3\text{H} \) with other recent results obtained using realistic \(NN \) interactions. The contributions to \(P_e \) from the \(^1\!P_1 \) and \(^3\!P_0' \) admixtures are also given separately. It is clear that the agreement between my results and previous results is very good, and is slightly better when \(r_e = 0.1K^{-1} = 0.432 \text{ fm} \). In Table I, I used a \(D \)-state probability of 5\% for the deuteron bound state. Increasing it to 7% increases the result for \(P_e \) by only a few percent. I now extend the calculation, with a 5\% \(D \)-state probability and \(r_e = 0.1K^{-1} \), to obtain \(A_\gamma \) and \(A_o \) at energies above threshold.

The results are shown in Fig. 1, where the abscissa is the energy of the incident particle above threshold (hereafter all energies are relative to threshold). In Fig. 1 curves \(a \) and \(c \) are \(\sigma_o \) and \(\sigma_\gamma \), respectively. Curves \(b \) and \(d \) are the corresponding cross sections when the \(p \) wave in the final state is ignored. It is interesting to note that because of the extra integration over \(E_{rel} \) [see (6)], the percentage of \(\rho \)-wave contribution to \(\sigma_o \) is smaller than that to \(\sigma_\gamma \), for the same incident energy. In the energy range of 0.5 to 1.0 MeV \(\sigma_o \) is about 10\% times smaller than \(\sigma_\gamma \). Curves \(f \) and \(h \) are the results for \(A_\gamma/P_\gamma \), calculated, respectively, from the \(\rho \)-exchange and the "weak form factor" PNC force, in the Cabibbo theory. In both cases, up to 0.5 MeV \(A_\gamma \) is completely dominated by contributions from the \(^1\!P_1 \) and \(^3\!P_0' \) admixtures. At 1 MeV the contributions from the \(^3\!S_1' \) component is about 10\% of the total; those from the \(^3\!D_2' \) and \(^3\!P_1 \) admixtures are negligible. Beyond 1 MeV (not shown in Fig. 1) the negative contribution from \(^3\!S_1' \) rises rapidly and \(A_\gamma \) decreases steadily. Curves \(g \) and \(\delta \)

<table>
<thead>
<tr>
<th>PNC force</th>
<th>(r_e) (fm)</th>
<th>(^1!P_1)</th>
<th>(^3!P_0')</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho) exchange</td>
<td>0.432</td>
<td>-1.09</td>
<td>3.30</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td>0.561</td>
<td>-1.80</td>
<td>2.62</td>
<td>1.82</td>
</tr>
<tr>
<td>Others(^a)</td>
<td>-0.99</td>
<td>3.42</td>
<td>2.42</td>
<td></td>
</tr>
<tr>
<td>Weak form factor</td>
<td>0.432</td>
<td>-2.21</td>
<td>7.71</td>
<td>5.50</td>
</tr>
<tr>
<td></td>
<td>0.561</td>
<td>-1.95</td>
<td>7.23</td>
<td>5.28</td>
</tr>
<tr>
<td>Others(^b)</td>
<td>-2.19</td>
<td>7.43</td>
<td>5.23</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Mean of results in Refs. 2 and 3; the rms deviation of the results is about 0.20.

\(^b\)Ref. 3.
FIG. 1. Curves a and c are σ_γ and $\sigma_{p\gamma}$, respectively; b and d correspond to a and c, respectively, but with the p wave in the final state ignored; f and g is the asymmetry A_γ calculated with the p-exchange PNC force in the Cabibbo (Weinberg-Salam) theory; h and i correspond to f and g, respectively, but are calculated with a PNC force derived from weak form factors; e is the asymmetry A_γ calculated the same way as h.

correspond to f and h, respectively, but include the effect of the $\Delta f = 0$ and 2 PNC forces, of the neutral weak current in the Weinberg-Salam model. This effect (I use $\sin^2\theta_{\text{WS}} = 0.35$) reduces A_γ by approximately 25%. The neutral current may enhance the amplitude of $3P_1$ substantially, but because this component contributes to A_γ via a relatively weak isoscalar $M1$ transition, the enhanced $A_\gamma(3P_1)$ remains less than 1% of the total A_γ.

Curve e in Fig. 1 is A_{γ}/F_γ calculated the same way as curve h, and has a structure similar to h as far as the relative importance of various PNC components is concerned. As a function of the incident energy, it has a slower rate of decrease than h, which can be understood in terms of the lesser importance of the p wave to σ_γ than to $\sigma_{p\gamma}$. The A_γ calculated with the p-exchange PNC force is about 2.5 times smaller than the σ_γ and the inclusion of the (Weinberg-Salam) neutral current in the PNC force reduces A_γ by about 25%. The neutral-weak-current contribution to the asymmetry due to the direct exchange of Z^0 bosons between the nucleus and the electron is at least one order of magnitude smaller than the A_γ we have calculated and has been ignored.

In summary, the total cross section for $^2\text{He}(e,n)e'p$ is calculated to be about 0.5 to 1 μb, or about three orders of magnitude smaller than the cross section for $^2\text{He}(\gamma,p)e'$ in the range of incident energy 0.5 to 1 MeV above threshold; below these energies $\sigma_{p\gamma}$ is much smaller. At threshold the asymmetries in the two reactions are found to be of similar magnitude; about 2 $\times 10^{-8}$ when the p-exchange PNC force is used and about 5×10^{-9} when a force derived from weak form factors is used. Both are monotonically decreasing functions of the incident energy at low energies. At 1 MeV above threshold, A_γ is smaller by a factor of 5, and A_γ by a factor 2, than their respective values at threshold. More importantly, I find that up to 1 MeV above threshold, the effect of the rising p wave amplitude in the np continuum on the asymmetry is reflected mainly in increasing the denominators in (7) and (8); the parity admixtures associated to the p wave and the $3P_1$ component generated by the $\Delta f = 1$, PNC force remain unimportant, as they are at threshold. I thus conclude that up to 1 MeV above threshold A_γ and $A_{p\gamma}$ are directly related to the circular polarization of the photon in $p(n_\gamma, \gamma_{p\gamma})^2\text{He}$.

I am indebted to A. B. McDonald for many fruitful discussions. The hospitality extended to me in the spring of 1978 by the Niels Bohr Institute, where part of this work was done, is gratefully acknowledged.

Resonances in 11B + 12C Elastic Scattering

A. D. Frawley, J. F. Mateja, A. Roy, and N. R. Fletcher

Department of Physics, The Florida State University, Tallahassee, Florida 32306

(Received 25 May 1978)

11B + 12C elastic scattering has been studied at ten angles from 28.0° to 150.8° in the energy range $E_{cm} = 9.8$ to 17.8 MeV. These data, together with supporting data from the 7Be exit channels, show that two strong resonances appear in the elastic scattering at energies of 12.5 and 13.2 MeV. Both resonances are approximately 300 keV wide.

While heavy-ion resonances have now been reported in various reaction channels for many systems, only a few systems have been found to show resonances in the elastic scattering channel. Two types of structure are observed: narrow resonances seen in 12C + 12C and 16O + 12C elastic scattering, and gross-structure resonances such as those seen in 12C + 28Si and 16O + 28Si elastic-scattering cross sections. Narrow structure is seen in the elastic channel for other systems besides 12C + 12C and 12C + 16O; examples are 16O + 16O and 12C + 28Si. However, it has not been clearly established that the structure is due to resonances in those cases. The only non-α-type system for which elastic scattering resonances have been claimed is 12C + 12C, but this claim has been disputed and is apparently not generally accepted.

We have investigated the energy dependence of the elastic-scattering cross sections for the 11B + 12C system for c.m. energies of 9.8 to 17.8 MeV. Excitation functions were measured at ten angles from 28° to 150.8° in the c.m. system. These data, together with supporting data from reactions 12C(11B, 9Be)15N, show that there are two strong, narrow resonances in the elastic scattering channel. This provides clear evidence of narrow resonances in the elastic channel for a heavy-ion system other than 12C + 12C and 12C + 16O.

The measurements were made with a 11B beam from the Florida State University Super FN Tandem Van De Graaff Accelerator. A 60-μg/cm2 natural carbon target was used throughout. The energy loss in the target was about 200 keV in the lab at the low-energy end of the measured range. Excitation functions were measured between lab energies of 18.8 and 34.1 MeV in steps of approximately 200 keV. Elastic data were recorded at ten c.m. angles from 28.0° to 150.8° for the 11B. This was done by measuring both 11B and 12C recoil yields at lab angles of 14.6°, 19.6°, 24.6°, 49.6°, and 59.6°. Particle identification was required at the three forward angles, and a telescope with a 15-μm ΔE detector was used at each of these angles. Single, thin detectors were used at 49.6° and 59.6° to minimize the energy loss of light reaction products and prevent them from obscuring the relatively low-energy 11B and 12C groups. Carbon buildup on the target was reduced by placing liquid-nitrogen traps in the beam line and around the target, and was found to be about 10% over the duration of one excitation-function measurement. The data are not corrected for target-thickness increase with time. Absolute cross sections were obtained by measuring the yield of 16O elastic scattering at 20 MeV at angles of 17° and 23° in the lab, where the cross section follows the Rutherford-scattering formula. The absolute cross sections are believed accurate to within 15%. The 9Be measurements were made using the Florida State University 9Be detection system. The target thickness was measured by the method outlined above, and found to be 80 μg/cm2. All c.m. energies quoted are corrected for energy loss in the targets.

The excitation functions for the elastic scattering are shown in Fig. 1. A very strong anomaly is seen at about 13.2 MeV at every angle from 60.8° to 150.8°. A second anomaly appears near 12.5 MeV at the angles 93.9°, 111.9°, 130.8°, and 150.8°. The structure is about 300 keV wide in both cases. Since the c.m. coherence angle for fluctuations is estimated to be $1/\hbar r \approx 5°$ at 13