Divergence and Shannon Information in Genomes

Hong-Da Chen,1 Chang-Heng Chang,1 Li-Ching Hsieh,4 and Hoong-Chien Lee1,2,3
1Department of Physics, National Central University, Chungli, Taiwan 320, Republic of China
2Department of Life Science, National Central University, Chungli, Taiwan 320, Republic of China
3Center for Complex Systems, National Central University, Chungli, Taiwan 320, Republic of China
4Institute of Information Science and Genomics Research Center, Academia Sinica, Taipei, Taiwan 115, Republic of China

(Received 23 September 2004; published 5 May 2005)

Shannon information (SI) and its special case, divergence, are defined for a DNA sequence in terms of probabilities of chemical words in the sequence and are computed for a set of complete genomes highly diverse in length and composition. We find the following: SI (but not divergence) is inversely proportional to sequence length for a random sequence but is length independent for genomes; the genomic SI is always greater and, for shorter words and longer sequences, hundreds to thousands times greater than the SI in a random sequence whose length and composition match those of the genome; genomic SIs appear to have word-length dependent universal values. The universality is inferred to be an evolution footprint of a universal mode for genome growth.

DOI: 10.1103/PhysRevLett.94.178103

PACS numbers: 87.10.+e, 02.50.–r, 87.14.Gg, 87.23.Kg

Shannon entropy [1] has been used in almost every field concerned with information, including the analysis of DNA and protein sequences [2–5]. In the field of comparative genomics, however, it seems not to have found any systematic application. The high heterogeneity of complete genomes in length, base composition, and percentage of coding regions may make comparison based on Shannon entropy problematic. Here we show that, by simple and systematic application, the high heterogeneity of comparative genomics, however, it seems not to have found any appropriate definition of a quantity we call Shannon information (SI), the difficulties associated with these issues are surmounted. The SIs are applied to characterize the distribution of the occurrence frequency of k-mers, or words of a k chemical letter, in complete genomes. We present a simple relation between the SI and the relative spectral width of a distribution, a relation that furnishes an intuitive understanding between SI and information in a sequence. We show that, in spite of their high heterogeneity, the SIs in complete genomes can be represented by a set of genome independent universal lengths.

Divergence and Shannon information.—Consider a set of occurrence frequencies, \(\mathcal{F} = \{f_i\} \), \(f_i = f_{ij} = L \) for \(\tau \) types of events, where \(f_{ij} / L \) is the probability of event \(i \). The Shannon entropy, or uncertainty [1], for \(\mathcal{F} \) is \(H(\mathcal{F}) = -\sum_i (f_i / L) \ln (f_i / L) \). The quantity attains its maximum value \(H_{\text{max}} = \ln \tau \) when all \(f_i \) are equal to the mean frequency \(\bar{f} = 1 / \tau L \). In \(H \), Shannon was concerned with the fidelity of messages as they are transported through communication devices. Here we are interested in the information in \(\mathcal{F} \) itself. There is a general notion that information in a system increases with a decrease in uncertainty; hence we identify the quantity

\[
D(\mathcal{F}) = \ln \tau - H(\mathcal{F}) = L^{-1} \sum_i f_i \ln (f_i / \bar{f}),
\]

called divergence by Gatlin [2], as the zeroth order SI in \(\mathcal{F} \). Shannon called the ratio \(D(\mathcal{F}) / H_{\text{max}} \) redundancy.

Suppose the set \(\mathcal{F} = \{\mathcal{F}_m\} \) is composed of subsets, \(\mathcal{F}_m = \{f_i | \tau_m, L_m\} \), each having its own distinct type of events \(\tau_m \), total number of events \(L_m \), and mean frequency \(\bar{f}_m = L_m / \tau_m \), where \(\sum_m \tau_m = \tau \) and \(\sum_m L_m = L \). The divergence of each subset is \(D(\mathcal{F}_m) = \sum_i f_i / L_m \ln (f_i / \bar{f}_m) \), where the summation is restricted to those \(f_i \)'s in the subset \(\mathcal{F}_m \). We define the SI carried by \(\mathcal{F} \) to be the weighted average of the divergences in the subsets:

\[
R(\mathcal{F}) = \sum_m (L_m / L) D(\mathcal{F}_m) = L^{-1} \sum_m f_i \ln (f_i / \bar{f}_m).
\]

Frequency distribution in a DNA sequence.—We view a single strand of DNA as linear text written in the four chemical letters, A, C, G, and T, representing the four kinds of nucleotides. Empirically, genomes are invariably within a few percent of being compositionally self-complementary, and, for the present study, it suffices to characterize the base composition of a genome by a single number, \(p \), the combined probability of \((A + T) \). From now on, the term profile of a sequence will refer to the \(p \) value and the length \(L \) of the sequence. We will use the SI in random sequences as benchmarks for the SI in genomes. A random sequence having the profile of a genome is said to be a random match for the genome.

For a DNA sequence of length \(L \), we denote by \(\mathcal{F}^{(k)} \) the set \(\{f_i | \tau = 4^k, L \} \), where \(f_i \) is the occurrence frequency of the \(i \)th overlapping a k-letter word, or k-mer [6]. For \(\mathcal{F}^{(k)} \) the number of event types is \(\tau = 4^k \) and the mean frequency is \(\bar{f} = 4^{-k} L \). Given \(\mathcal{F}^{(k)} \), we can construct a k spectrum where \(n_f \), the number of k-mers occurring with frequency \(f \), is given as a function of \(f \). For simplicity, we also call \(\mathcal{F}^{(k)} \) a k spectrum.

The \(\mathcal{F}^{(k)} \) of a genomes is always composed of \(k + 1 \) subsets \(\mathcal{F}_m^{(k)} \), called m sets, \(m = 1 \) to \(k \), where \(\mathcal{F}_m^{(k)} \) is the subset of k-mers with \(m (A + T)'s \). When a genome does not have \(p = 0.5 \), and most genomes are of this type, then
Relative spectral width. —In Eq. (1), by expanding \(f_i \) around \(\bar{f} \) in the logarithm, we obtain for a unimodal \(\mathcal{F} \) the series

\[
D(\mathcal{F}) = \sum_{n=2}^{\infty} \frac{(-1)^n}{n(n-1)} \left(\left(\frac{f_i - \bar{f}}{\bar{f}} \right)^n \right) = \frac{\Delta^2}{2f^2},
\]

where \(\Delta \) is the standard deviation in \(\mathcal{F} \), or \(D(\mathcal{F}) \approx \sigma^2/2 \), where \(\sigma \) is the relative spectral width (RSW) of \(\mathcal{F} \). This relation is useful in at least two respects. First, it gives one a heuristic understanding why the divergence of and information in a (unimodal) spectrum are connected. When the spectrum is narrow, there is little information because all the \(k \)-mers occur with almost equal frequency. Because of the generally substantiated notion that highly overrepresented words in a genome are more likely to have biological meaning than words represented with an average frequency [8–11], the obverse is also true; namely, there is more information when the spectrum is broad. Second, Eq. (3) gives an accurate estimate of the divergence in the \(\mathcal{F}_m^{(k)} \) (and \(\mathcal{F}^{(k)} \)) of a random sequence. Provided \(\bar{f}_m \) is much greater than 1, \(\mathcal{F}_m^{(k)} \) is proportional to a Poisson distribution with mean \(\bar{f}_m \) [12,13], so that \(\Delta_{\text{ran}} \approx \sigma_{\text{ran}} = \bar{f}_m/\bar{f}_m \). Hence

\[
D(\mathcal{F}_m^{(k)}) = b_k\bar{f}_m = b_k\tau_m/2L_m
\]

for a random sequence. Then, from Eq. (2) we have a result for the SI in the \(\mathcal{F}_m^{(k)} \) of any random match, independent of \(p \):

\[
R(\mathcal{F}_m^{(k)}) = b_k\tau/2L \quad \text{(Random sequence).} \tag{4}
\]

The combinatorial factor \(b_k \) should be \(1 - \tau^{-1} \) for a true random sequence; a semiempirical value \(1 - 1/2^{k-1} \) is used here because a random match is not fully random: it is made to be approximately compositionally self-complementary (as most genomes are) and its \(p \) value is fixed. That the SI in a random sequence diminishes as \(1/L \) with increasing \(L \) is connected to what is known as the large-system rule: the square of the RSW of a distribution associated with a random system is inversely proportional to the size of the system. We will see that the SI in genomes does not follow this rule.

Table 1. Shannon entropy \(H \) and divergence \(D \) in units of \(\ln 2 \) in the \(k \) spectra of the genome sequence of \(E. coli \ 0157:H7 \) and its random match.

<table>
<thead>
<tr>
<th>(k)</th>
<th>Random match</th>
<th>(E. coli \ 0157:H7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>(H)</td>
<td>(D)</td>
</tr>
<tr>
<td>2</td>
<td>4.0000</td>
<td>5.12 \times 10^{-7}</td>
</tr>
<tr>
<td>3</td>
<td>6.0000</td>
<td>6.76 \times 10^{-6}</td>
</tr>
<tr>
<td>4</td>
<td>8.0000</td>
<td>3.03 \times 10^{-5}</td>
</tr>
<tr>
<td>5</td>
<td>9.9999</td>
<td>1.28 \times 10^{-4}</td>
</tr>
<tr>
<td>6</td>
<td>11.999</td>
<td>5.23 \times 10^{-4}</td>
</tr>
<tr>
<td>7</td>
<td>13.998</td>
<td>2.12 \times 10^{-3}</td>
</tr>
<tr>
<td>8</td>
<td>15.991</td>
<td>8.56 \times 10^{-3}</td>
</tr>
<tr>
<td>9</td>
<td>17.965</td>
<td>3.45 \times 10^{-2}</td>
</tr>
<tr>
<td>10</td>
<td>19.858</td>
<td>1.42 \times 10^{-1}</td>
</tr>
</tbody>
</table>
Shannon information in a \(p = 0.5 \) genome.—The genome of \(E. \ coli \ 0157:H7 \) is 5.53 Mb long and has \(p = 0.496 \). We therefore use Eq. (1) to compute its SI. The Shannon entropy and divergence (in units of \(\ln 2 \)) in the \(k \) spectra, \(k = 2 \) to 10, of the genome and its random match are given in Table I. We notice the following: (i) For both sequences the Shannon entropy (columns 2 and 5) is, in every case, close to its maximum value, \(2k \). (ii) For the random match the value computed using Eq. (1) (column 3) is in excellent agreement with the expected value (column 4). (iii) For the smallest \(k \)'s, the divergence is a miniscule signal buried in a huge Shannon entropy background. (iv) This tiny signal, when isolated, cleanly sets apart a genome from its random match: the genomic divergence is greater than its random-match counterpart in all cases and, for the smaller \(k \)'s, many thousand times greater. (v) Equation (3) is verified (last column).

Difference between divergence and SI.—When \(p \) is not close to 0.5, \(D(F^{(k)}) \) and \(F(F^{(k)}) \) differ. Consider the 5-spectra (not the subspectra) for the genome and its random match shown in Fig. 1. Because the \(\bar{F}_{m} \)'s are spread widely, their distribution plays a dominant role in determining the width of the spectra. If we ignore the widths of the individual subspectra and use Eq. (3), we get \(D(F^{(k)}) = \bar{F}_{m} = D^{(0)}(k, p) = 0.5(2[(p^{2} + (1 - p)^{2})^{k} - 1]) \) for both the genomic and random spectra \(D^{(0)}(5, 0.691) = 0.488 \), as compared to the actual values of 0.575 and 0.485 for the genomic and random 5-spectra in Fig. 1. \(D(F^{(k)}) \) depends strongly on \(p \), is independent of \(L \), disagrees with Eq. (4), and is therefore not useful for estimating the SI of a random sequence.

The monomer divergence and SI are quantities that are completely determined by the base composition of a sequence and are independent of its randomness. Whereas \(R(F^{(1)}) = 0 \) always, \(D(F^{(1)}) \) depends strongly on \(p \) and vanishes only at \(p = 0.5 \). The genome of \(Mycoplasma \ genitalium \) has \(p = 0.683 \) and \(D(F^{(1)}) = 0.0686 \) (compared with \(D^{(0)} = 0.670 \)). The genome \(Haemophilus \ influenzae \) has \(p = 0.618 \) and \(D(F^{(1)}) = 0.0281 \) (0.0278). Since these values say nothing about the randomness or order of the sequence, yet depend nontrivially on \(p \), they convey less information about the sequence than the value of \(p \) alone.

The general case.—Table II gives the divergences \(D_{\text{gen}} \) and \(D_{\text{ran}} \) of the \(m \) sets in the 6-spectra of three sequences and their random matches, \(P. \ aerophilum, C. \ muridarum, \) and \(S. \ avermitilis \). These sequences span a wide range in profile. Once again, \(D_{\text{ran}} \) (column 5) is well approximated by its expected value (column 4) and is much less than \(D_{\text{gen}} \). \(D_{\text{gen}} \) varies but does not exhibit a clear dependence on \(L \). The 6-mer SI, computed according to Eq. (2), for \(E. \ coli \ 0157:H7 \) and the three genomes of Table II and their

random matches are given in Table III. Again, we have R_{ran} well approximated by $b_k/2L$, $R_{\text{gen}} \gg R_{\text{ran}}$, and R_{gen} independent of genome length.

A new feature is manifest in Table III: in spite of their greatly varying profiles, the four genomes have almost the same SI in their 6-spectra. Indeed, at least for word lengths up to 10 letters, we have found that SI varies little for complete genomes with vastly differing profiles. Figure 2 shows SI as a function of sequence length in six prokaryotes and six eukaryotic chromosomes [7].

Genomes have universal SI.—With the exception of several 2-mer SIs, all genomic SIs lie within a horizontal band bounded by 0.01 and 0.9. (For technical reasons too lengthy to describe here but which will be explained elsewhere, the 2-mer SI has the largest fluctuations.) For a given k, the genomic variance in SI is only about a factor of 2. In comparison, the longest sequence—*H. sapiens* (*I*) at 228 Mb—is about 1200 times longer than the shortest—*E. cuniculi* (*I*) at 0.198 Mb. In this context, we view the genomic SI as having a genome-independent but k-dependent universal value. For each k, we express this universal value, $R_{\text{uni}}(k)$, in terms of the length, L_r, called the equivalent root sequence, of a random sequence whose SI is equal to R_{uni}: $L_r(k) = 4^k b_k/2R_{\text{uni}}(k)$. Then the genomic results in Fig. 2 are summarized by the empirical relation $\ln[L_r(k)] = ak + C$, where $a = 1.01 \pm 0.06$ and $C = 3.80 \pm 0.50$. L_r is surprisingly short for small k but grows rapidly with k: $L_r(k)$ is 340 b, 15 kb, and 1.1 Mb for $k = 2, 6, 10$, respectively.

Now, if a random root sequence of length L_r is replicated a finite number of times, then, provided $k \ll L_r$, the k-mer SI in the product sequence is the same as that in the root sequence. We therefore suggest that the observed universality of SI in complete genomes is an evolution footprint produced by a universal mode of genome growth, a mode that began when the genomes were very short—less than 340 b—and in which segmental duplication played a major role [13,14]. Working exploring the implication of this notion will be reported elsewhere.

This work is partly supported by Grants No. 92-2112-M-008-040 and No. 93-2311-B-008-006 from the National Science Council (ROC) to H.-C. L.

References

